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Chapter 1

Introduction

1.1 From the Theory of Forms to the Knowledge
Boom

Knowledge is a concept that the ancient philosophers studied more than 2000
years ago. Plato and Aristotle, already in 400 BC, tried to understand and
define what is knowledge and how it is created and acquired. In the Theory of
Ideas (or Forms), Plato argues that the knowledge is already created and given
to us from a universal metaphysical level. In this way, he claims that we learn
in this life by remembering and trying to imitate the principles that our soul
already encloses from the world of Ideas. On the other hand, Aristotle, the most
important student of Plato for twenty years, supported that the observation and
the study of particular phenomena will lead us to the real knowledge.

Over the years, the definition of knowledge constituted an ongoing debate
among philosophers and the triptych of the true justified belief has been chal-
lenged by modern epistemologists several times (Gettier, 1963). However, scien-
tists, through the steps they follow in research, help us to realize how we come
to the genesis of scientific knowledge. In that sense, we could say that scientific
research agrees with the empirical aristotelean philosophy, since it depends on
the observation, the measurement and the study of evidence. The collection of
data, its process and evaluation constitute critical steps that transform the pure
data into information, and in turn the latter one into scientific knowledge.

Even without a globally agreed definition of what knowledge is, it is a uni-
versal conviction that knowledge constitutes a very powerful and valuable good.

13



14 CHAPTER 1. INTRODUCTION

Apart from the science and technology, connected to knowledge by an endless
two-way bond, almost all the aspects of everyday life depend on knowledge and
can be improved by using the existing know-how, saving us from constantly
reinventing the wheel.

Today, tons of information surrounds us where we can acquire from many and
di↵erent sources, such as books, mass media, social networks, etc. In particular,
the World Wide Web consists of a bottomless source of new information, readily
available at our fingertips. The amount of data being generated every day is
still growing exponentially; it seems that for the first time in history there is
more information than we can even process and consume. However, information
alone does not directly bring us closer to the philosopher’s true knowledge. To
this end, it becomes a matter of major importance to find ways to manage,
analyze, selectively discard and exploit all this data we collect and turn it into
(useful) knowledge.

1.2 Data Management

The father of history, Herodotus, aptly predicates that “Of all men’s miseries the
bitterest is to know so much and to have control over nothing”. This quote was
not randomly said by Herodotus, the person who first realized the importance of
collecting, confirming, writing, organizing and delivering to the next generations
historic material that was taking place at his time. To have control over our
knowledge thesaurus is an important issue, and it becomes even more di�cult
the more information we have to access and the more we need to combine
multiple data sets.

Taking a closer look at the technological achievements of the last century,
we see that they drastically a↵ected the creation of knowledge. In the mid
of 20th century, the technological evolution and most importantly transistor’s
invention, brought us closer to the information technology revolution. The
reason for that was twofold; firstly it allowed the miniaturization of all modern
electronics that brought on the digital information age and secondly it triggered
the creation of cheaper and more powerful computational units that were able to
store and process the generated data. A few decades later, the microprocessor
made feasible the generation and process of such large amount of data that one
hundred years ago it was hard, even impossible, to manipulate in a manual way.

To this end, data management very soon became the main concern of in-
formation technology. The big firms and organizations that were continuously
generating data on a daily basis, kept asking for new technologies that would
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allow them to process, analyze, visualize and manage their data in a more ef-
ficient way. Furthermore, fundamental sciences such as astronomy and biology
came across even more demanding issues, since the data they started producing
and want to discover patterns exceeds by far the needs of all the other fields.
The geneticist Richard Lewontin, in his book titled Biology as Ideology: The
Doctrine of DNA, characteristically states that the knowledge itself is not pow-
erful enough, but it further empowers only those who have or can acquire the
power to use it.

1.2.1 Database Management Systems

The necessity for new information technologies became very soon a clear research
target for the computer science community and the first data management pro-
totypes came already around the 1960s. These systems were mostly customized
and used only in large organizations, who could a↵ord the extremely high costs.
Back then, a database was designed to be the system that would be responsible
to store, organize and access enormous quantities of digital data in an automatic
and e�cient way.

One of the first Database Management Systems (DBMSs), called IMS, was
built by IBM back in 1968 for NASA’s Apollo space program. Since then, we
meet the database technology almost in every aspect of our electronic life. Shop-
ping at a store, borrowing a book from the library, making bank transactions,
or requesting student transcripts are only some of the examples that imply the
existence of a database. A DBMS typically consists of the appropriate software
that provides the insertion of new data in the database, the modification and
deletion of existing data and more importantly the e�cient search and retrieval
of data that qualifies the requester’s constrains.

A milestone in the database research was the relational model, originally
formulated and proposed by Edgar Codd in the 1970s (Codd, 1970). There the
data is organized into a set of tables, which are related to each other in many
and di↵erent ways. Each table follows a predefined schema and each record
(tuple) stored in a table must also respect the same schema in order to be valid.
One of the nice properties of the relational model is that we can add and ac-
cess data, without reorganizing the tables every time we do so. A table can
have many records and each record can have many fields (attributes). In the
relational model, we distinguish the tuples of a table using a unique key, called
primary key. Another type of keys are the foreign keys, used to create links
between tables. In this way, the navigation among tables and the retrieval of
those entries that qualify the user’s request was dramatically improved, com-
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pared to other previously used models, e.g., hierarchical and network database
model. Consider for example the case of a university database; there we could
have several di↵erent tables such as the “students”, the “courses” and the “pro-
fessors” tables. For each student we may keep a record, marked by a unique
student ID, and other attributes that better describe the student, e.g., name,
date of birth and address. Moreover, we may keep track of which courses he
has successfully passed and the evaluation he has received, by linking the two
di↵erent tables, i.e., the tables “students” and “courses”. Also, each course is
linked to the “professors” table to indicate who is teaching it in each semester.
By organizing our data in that structured way, we can easily navigate through
the tables and retrieve any combinative query, e.g., give me all the professors
that teach a course with success rate greater than 70% and average student
grades 8 out of 10, for at least 5 years in a row.

The success of the relational model, mainly comes from the fact that it works
in a declarative way. Relational databases are extremely easy to customize to
fit almost any kind of data. The user is able to access and manipulate his data
without being involved in technical decisions that have to do with designing
how the data will be stored and how the requests are going to be executed.
Through SQL, a declarative query language, the user obtains full control over
the data and is able to describe in an abstract way what kind of information
he is interested in, keeping his hands clean of any internal low-level system
specifications. On the contrary, the DBMS is in charge to decide autonomously
what is the best way to organize and physically store the data, and designs the
appropriate strategy for getting the user’s queries answered.

Apart from the powerfulness and the flexibility that the database systems
provide, another reason that contributed to their wide use is coming for the
fact that they are generic enough and able to handle multiple users at the same
time. A DBMS has the appropriate mechanisms to always ensure data integrity,
despite multiple concurrent users or di↵erent application programs are accessing
the same database. The ACID properties are the main rules at the database
cookbook, that guarantee safe transaction executions. In short, the first rule,
called atomicity, implies that once a transaction starts it should be fully com-
pleted otherwise it should become in a status as if it never happened. All
transactions must maintain the consistency of the database. Two concurrent
transactions must be isolated and not interfere with each other while happening.
Finally, once a transaction is completed the DBMS guarantees that its impact to
the database will be durable from here on. Working under these rules and bal-
ancing with mastery between reliability and performance, the database systems
very soon convinced the big firms and organizations that they are trustworthy
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and skilled to manage their valuable data.
Database management systems were created to provide persistent data stor-

age and an e�cient and reliable answering mechanism. It is the suggested
complete software solution, when the application scenario prerequisites that the
data is a priori known and relatively static. A DBMS typically stores, orga-
nizes, indexes and prepares the stored data to the best of its knowledge and it
becomes ready to accept and immediately answer the potential queries that will
be posed in the future. Once a request comes, the database system syntacti-
cally and semantically analyzes it, and based on a predefined set of rules, as well
as previously acquired query processing experience (e.g., statistics, indices), it
decides what is the best query plan to use for deriving the matching answers.
The execution engine precisely follows the designed query plan, and evaluates
the query over the data that is currently stored in the database.

Database systems constitute an alive evolving research field for the past 50
years. Their quick commercial exploitation, challenged their initial capabilities
and brought out their potential weak points. Many research subfields have been
created to fill in the gaps and strengthen their features; some focus at the core
level of query processing and optimization, and others cope with higher level
topics such as language interfaces, distributed and parallel processing, privacy
and security issues or research related to web applications. The diverse mar-
ket needs motivate the expansion of di↵erent database architectures. Both a
small business and an astronomical data center may use a database system, but
their fundamentally di↵erent requirements drove researchers and developers to
design di↵erent database architectures and solutions. Many open source proto-
types, as such PostgreSQL, MySQL and MonetDB not only survived through
the years but also keep leading the database research. Moreover the big players
of the commercial arena, such as Oracle, IBM and Microsoft, are continuously
investing in the ongoing database technology evolution.

Half a century after the first prototypes, database systems are still the center
of attention of information technology. It seems that there are still more to
research, since new data sources challenge their capabilities and performance
every day.

1.3 Data Stream Management

Plenty of application scenarios fit in the traditional database processing scheme.
However, a new type of applications, called data streams, that came a few
decades after the establishment of the DBMSs, could not be satisfied by that
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model. In the data stream scenario, we have to deal with the continual genera-
tion and processing of an infinite flood of data (stream). Queries on the other
hand, appear to be persistent, namely once they are submitted they remain
active forever or for at least a long period of time. These two fundamental
di↵erences on the queries and data lifetime, became enough to make very soon
clear that database systems were not skilled to handle such applications. This
way, the computer scientists started looking for new system architectures that
could fulfill the new requirements.

A potentially large application domain stimulates the creation of data stream
management systems (DSMSs). Sensors, organized in wireless networks, that
continuously measure physical, biological or chemical input, nicely fit in the data
stream model. The sensors produce streams of data that continuously should
be analyzed in real-time to keep track of environmental conditions and detect
anomalies in case they happened. Smoke detectors, health-care monitors and
tra�c controllers are only some simple examples that fall in that application
scenario. Furthermore, sensor networks take control over smart building design,
or can be used to wildlife tracking systems to give rich information to animal
biologists.

In the same line, network monitoring systems continuously need to analyze
the network tra�c to catch potential problems, such as unusual activity, delays,
server crashes and bottlenecks. They derive information enclosed in IP packets,
while they are passing through the network, and generate the appropriate alerts
when they diagnose a problematic behavior.

Financial trading applications is another scenario that meets the data stream
requirements. The idea is the same also here, continuous fast updated infor-
mation coming from di↵erent sources, should be analyzed and combined to
accomplish profitable transactions. The list of applications that inspired the
creation of data stream systems is long. For example, consider that the World
Wide Web provides a plethora of streaming opportunities through web feeds.
Users are able to subscribe to interesting sources of information and they are
automatically notified when new data is available.

DSMS vs. DBMS

Let us now see in more detail what are the main fundamental di↵erences between
the database and the data stream application scenario.

• Continuous query processing.

In a stream application, we need mechanisms to support long-standing/
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continuous queries over data that is continuously updated from the en-
vironment. The queries are issued once and then they stay active for a
long time, monitoring the incoming data. On the contrary in a database
scenario, the user poses a query and receives the corresponding answers
only once. If he wants to check for potentially di↵erent answers later, he
should re-submit the same query to the database. The database tradition-
ally, evaluates that queries all over again, without taking into account the
previous evaluation.

• Data lifetime.

In the database scenario, the data is characterized as persistent. Updates
over the data are expected but their rate is less frequent than the incoming
rate of queries. On the other side, in a stream application, we should be
prepared to handle an infinite sequence of data in real-time. Typically
once the data comes it is analyzed against waiting queries and then it is
forgotten.

• Pull vs. Push model

Taking into account the way that a DBMS treats data and queries, we
could say that it follows a pure pull-based model, since each time a new
query arrives, the engine pulls the data from the disk to search for answers.
On the contrary, a typical DSMS works in a push-based way, pushing the
incoming streams to meet the interested waiting queries.

• Real-time processing

In data stream applications, it is very important to achieve real-time pro-
cessing. Delays may a↵ect answer’s validity and also could produce system
bottlenecks, since more data will be continuously collected. A data stream
engine should be alert and process the incoming data in real-time.

• Workload fluctuations

Data stream arrival may vary dramatically. There are application sce-
narios with low data input rates, such as sensors that update their mea-
surements every one minute, or other cases where we have to deal with
extremely high input stream rates. For example, most recent genera-
tion of satellites provides ground reception rates of 300 Mbit/sec and 800
Mbit/sec. Environment and workload changes call for adaptive processing
strategies at the query evaluation level to achieve the best query response
time. In databases we have to deal with workload variation too, but in
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terms of queries. In that case, it may become mandatory to update our
indices over the stored data.

• Window processing

As we have already mentioned a stream is an infinite sequence of data.
Given that hardware and software have limitations, we also need to limit
the maximum amount of data we can gather and process within a given
time budget. The initial stream processing models were very simple; they
were producing answers by considering only one incoming tuple at a time.
The window processing model came as an intermediate solution between
single tuple and database processing. In this case, the system produces
answers considering a number of collected stream tuples, instead of just a
single one. The window processing model increases the expressiveness of
stream systems, allowing for aggregations and joins in addition to simple
filtering queries.

• Query languages

Taking all the previous factors into account, the existence of new data
models and query languages was necessary for the establishments of the
DSMSs. The language used in relational databases, was not su�cient to
represent the di↵erent nature and semantics of stream data and queries.

Given these di↵erences, and the unique characteristics and needs of continu-
ous query processing, the pioneering DSMS architects naturally considered that
the existing DBMS architectures are inadequate to support stream processing
and achieve the desired performance. Another aspect is that the initial stream
applications had quite simple requirements in terms of query processing. This
made the existing DBMS systems look overloaded with functionalities. These
factors led researchers to design and build new architectures from scratch and
several DSMS solutions have been proposed over the last years giving birth to
very interesting ideas and system architectures, e.g., (Babcock et al., 2004; Bal-
akrishnan et al., 2004; Chandrasekaran et al., 2003; Chen et al., 2000; Cranor
et al., 2003; Girod et al., 2007).
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1.4 The DataCell: a DSMS into the heart of a
DBMS

1.4.1 Motivation

As we discussed earlier, the diverse needs for persistent data management and
continuous queries processing, brought two di↵erent system architectures. How-
ever, the data management evolution does not seem to stop here. The last few
years a new processing paradigm is born, where incoming data (stream) needs
to quickly be analyzed and possibly combined with existing data to discover
trends and patterns. Subsequently, the new data enters the data warehouse and
is stored as normal for further analysis if necessary.

Natural sciences such as astronomy and biology that deal with large amounts
of data, also motivate that paradigm. In 2015 the astronomers will be able to
scan and catalog the entire night sky from a mountain-top in Chile, recording
30 Terabytes of data every night which incrementally will result in an abso-
lutely massive 150 Petabyte database (over the operation period of ten years).
It will be capturing changes to the observable universe evaluating huge statis-
tical calculations over the entire database. Another characteristic data-driven
example is the Large Hadron Collider (LHC) (LHC, 2010), a particle accelerator
that will revolutionize our understanding for the universe, generating almost 40
Terabytes of data every day and collecting 15 petabytes of data annually. The
same model stands for modern data warehouses which enrich their data on a
daily basis creating a strong need for quick reaction and combination of scalable
stream and traditional processing (Winter and Kostamaa, 2010).

In this new paradigm incoming streams of data need to quickly be analyzed
and possibly combined with existing data to discover trends and patterns. We
need scalable query processing that can combine continuous querying for fast
reaction to incoming data with traditional querying for access to the existing
data. However, neither pure database technology nor pure stream technology
are designed for this purpose.

In this thesis, we propose that a complete integration of database and stream-
ing technology is the way to go. We focus on the design, study and development
of such a system that integrates both streaming and database technologies in
the most natural way. A fully functional stream engine, called DataCell, is de-
signed on top of an extensible DBMS kernel. Our goal is to fully exploit the
generic storage and execution engine of the DBMS as well as its complete opti-
mizer stack. The end goal is a single system that does combine properties and
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features from both the database world and the stream world, and thus achieves
e�cient performance for both one-time and continuous queries.

1.4.2 The Basics

The ultimate goal of this thesis is to support full data management of persistent
and streaming data within an integrated processing kernel. Instead of building
a new system from scratch we opt to work over an extensible DBMS kernel such
that we can exploit mature techniques and algorithms in the area of database
systems. The challenge becomes how to extend such a scalable system such that
it supports stream processing in addition to one-time processing.

Stream researchers in the past argued that this is not feasible as it would be
very ine�cient. DataCell shows that this is not true anymore, and it successfully
combines both paradigms.

Our design and implementation is over the MonetDB system. MonetDB
is an open source column-store database management system, developed and
maintain at CWI. Several aspects of MonetDB make this research possible. For
instance, MonetDB allows for easy manipulation and extension of its optimizer
module which allows us to easily introduce new optimizer rules specific for Dat-
aCell while at the same time exploiting all existing optimizer rules a DBMS has
to o↵er. In addition, MonetDB is one of the leading column-store systems. We
heavily exploit its column-store nature in our techniques to speed up stream
processing exploiting critical column-store features such as vectorization.

The main idea is that when stream tuples arrive into the system, they are
immediately stored in (appended to) a new kind of lightweight tables, called
baskets. By temporarily collecting tuples into baskets, we can evaluate the
continuous queries over the baskets as if they were normal one-time queries
and thus we can reuse any kind of algorithm and optimization designed for a
modern DBMS. Once a tuple has been seen by all relevant queries/operators, it
is dropped from its basket.

Continuous query plans are represented by factories, i.e., a kind of co-routine,
whose semantics are extended to align with table producing SQL functions.
Each factory encloses a query plan that once it is evaluated it produces a partial
result at each call. For this, a factory continuously reads data from the input
baskets, evaluates its query plan and creates a result set, which it then places in
its output baskets. The factory remains active as long as the continuous query
remains in the systems, and it is always ready to consume incoming stream
data.

The execution of the factories is orchestrated by the DataCell scheduler. The
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firing condition is aligned to arrival of events, once there are tuples that may be
relevant to a waiting query we trigger its evaluation over these tuples. Further-
more, the scheduler manages the time constraints attached to event handling,
which leads to possibly delaying events in their baskets for some time. One im-
portant merit of the DataCell architecture, is the natural integration of baskets
and tables within the same processing fabric. A single factory can interact both
with tables and baskets, this way we can naturally support queries interweaving
the basic components of both models.

By introducing the baskets, the factories and the DataCell scheduler, our
architecture becomes able to proceed su�ciently data streams, without also
losing any database functionality. That is the natural first step that covers
the gap between the two incompatible processing models. However, numerous
research and technical questions immediately arise. The most prominent issues
are the ability to provide specialized stream functionality and hindrances to
guarantee real-time constraints for event handling. Also, we need to cope with
(and exploit) similarities between the many standing queries, in order to deal
with high performance requirements.

1.4.3 Research Challenges

It is a major challenge for the DataCell architecture to e�ciently support and
integrate all specialized stream features. The above description gives the first
directions that allow the exploration of quite flexible strategies, once we have
to deal with low latency deadlines or multi-query processing.

The road-map for DataCell research calls for innovation in many important
aspects of stream processing and the combination with already stored data.
Thus, one can distinguish between challenges that come from the fact that
stream processing is performed in a DBMS and challenges that arise by com-
bining the two query processing paradigms in one.

Regarding the first challenge, the goal is to provide all essential streaming
functionality and features without losing the DBMS’s strong storage and query-
ing capabilities. We draw a path where most of the streaming functionality
is provided via plan rewriting and minimal lower level operator changes. For
example, resource management, scheduling, and optimization in the presence of
numerous queries is a critical topic. Similarly to incremental processing, this
area has received a lot of attention with innovative solutions, e.g., (Sharaf et al.,
2008). DataCell o↵ers all the available ingredients to achieve similar levels of
multi-query optimizations while keeping the underlying generic engine intact.
For example, a single factory (i.e., plan) may dynamically split into multiple
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pieces or merge with other relevant factories to allow for e�cient sharing of
processing costs leading to very interesting scenarios in how the network of
factories and baskets is organized and adapts. Again, these issues can be re-
solved at a higher level through plan rewriting. The intermediates created for
incremental processing can be reused by many queries, while partitioning and
scheduling decisions can also adapt to the new parameters. We have the appro-
priate technology to make multiple queries to cache and exploit intermediates
in a column-store kernel.

Regarding the second challenge, a plethora of rich topics arise especially
when optimization becomes an issue. For example, query plans that touch
both streaming data and regular tables might require new optimizer rules or
adaptations of the current ones. Overall, DataCell opens the road for an exciting
research path by looking at the stream query processing issue from a di↵erent
perspective.

1.4.4 Contributions

The particular contributions of this thesis can be summarized as follows:

(1) A new Stream Paradigm. We show that the past belief that stream
query processing requires a specialized engine only for stream process-
ing is not su�cient anymore, especially due to the increasing scalability
requirements.

(2) DataCell architecture. We introduce the basic DataCell architecture,
to exploit the notion of scalable systems that can provide both streaming
and database functionality. We describe what are the minimal additions
that allow for stream processing within a DBMS kernel.

(3) Incremental processing. We show how to e�ciently support core stream-
ing functionalities in DataCell, i.e., incremental stream processing and
window-based processing.

(4) Multi-query processing. We investigate multi-query processing oppor-
tunities, another critical feature required in stream processing. Sharing
access of common basket, splitting, merging and dynamically reorganizing
the factories content are some cards we use on the performance hunting
game.
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(5) A Query Language for DataCell. We propose a language for DataCell
that extends SQL. It can be used to access both streaming and database
data at the same time.

(6) Research Path. We discuss in detail the new research area that opens
with the notion of DataCell and what are the future challenges towards
systems that can handle streams of multiple Terabytes on a daily basis.

1.4.5 Published Papers

The content of this thesis is built based on a number of publications in ma-
jor international conferences in the area of database management systems, of
computer science.

(1) Martin Kersten, Erietta Liarou and Romulo Goncalves. A Query Lan-
guage for a Data Refinery Cell. In Proceedings of the 2nd International
Workshop on Event Driven Architecture and Event Processing Systems,
(EDA-PS), in conjunction with VLDB’07, Vienna, Austria, September
2007

(2) Erietta Liarou, Romulo Goncalves and Stratos Idreos. Exploiting the
Power of Relational Databases for E�cient Stream Processing. In Pro-
ceedings of the 12th International Conference on Extending Database
Technology (EDBT), Saint-Petersburg, Russia, March 2009

(3) Erietta Liarou and Martin Kersten. DataCell: Building a Data Stream
Engine on top of a Relational Database Kernel. In Proceedings of the
35th International Conference on Very Large Data Bases, VLDB PhD
Workshop, Lyon, France, August 2009

(4) Erietta Liarou, Stratos Idreos, Stefan Manegold and Martin Kersten. En-
hanced Stream Processing in a DBMS Kernel. Submitted for publication
at the moment of printing this thesis.

(5) Martin Kersten, Stefan Manegold, Stratos Idreos and Erietta Liarou. The
Researcher’s Guide to the Data Deluge: Querying a Scientific Database in
Just a Few Seconds. In Proceedings of the Very Large Databases Endow-
ment (PVLDB) and in the 37th VLDB Conference, Seattle, WA, August
2011. Challenges and Visions best paper award.
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(6) Erietta Liarou, Stratos Idreos, Stefan Manegold, Martin Kersten. Mon-
etDB/DataCell: Online Analytics in a Streaming Column-Store. In Pro-
ceedings of the 38th International Conference on Very Large Data Bases
(PVLDB), Istanbul, Turkey, August 2012.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 we extensively
discuss related work. First, we search the roots of data stream management
systems in the heart of database applications and technology. We dedicate
enough space to describe and compare our work with other successful pure
data stream management systems, from the academic and commercial world.
Finally, we provide the mandatory background of our development platform,
the MonetDB system.

In Chapter 3 we describe the basic DataCell architecture. First, we explain
how we represent continuous queries and data streams in DataCell, the two
main stream concepts that until now were unknown in conventional databases.
Then we describe the full architecture and the newly introduced components
that give full stream functionality to our system.

In Chapter 4 we present the DataCell language interface. We propose a semi-
procedural language as a small extension of SQL, that can be used to access
both streaming and database data at the same time. The language concepts
introduced are compared against building blocks found in “pure” stream man-
agement systems. They can all be expressed in a concise way and demonstrate
the power of starting the design from a full-fledged SQL implementation.

Chapter 5 presents how we handle in DataCell one of the most important
specialized stream processing requirements, i.e., incremental window processing.
Even with the conventional underlying infrastructure that MonetDB o↵ers to
DataCell, we manage to compete against a specialized stream engine, elevating
incremental processing at the query plan level, instead of building specialized
stream operators.

Chapter 6 concludes the thesis and discusses a number of future interesting
open topics and possible research directions towards a complete data manage-
ment architecture that integrates database and stream functionalities in the
same kernel. DataCell opens the road for an exciting research path by look-
ing at the stream query processing issue from a di↵erent perspective and by
taking into account the needs of modern data management for scalable stream
processing combined with traditional query processing. Topics we discuss in
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this chapter include multi-query processing, adaptive query processing, query
relaxation, distributed processing, DataCell in di↵erent architectures, etc.
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Chapter 2

Background and Related
Work

Kranzberg’s second law states that “invention is the mother of necessity”.
Though history proves that great technological innovations were given birth
at certain periods to fulfill stressed human needs, the technological evolution
of the recent years in many scientific areas, creates new needs all over again.
Scientific evolution on various research areas brought data overloading on many
aspects of our lives. Modern applications coming from various fields, e.g., fi-
nance, telecommunications, networking, sensor and web applications, require
fast data analysis over data that are continuously updated.

In this new kind of applications, called data stream applications, we first of
all need mechanisms to support long-standing/continuous queries over data that
is continuously, and at high rate, updated by the environment. To achieve good
processing performance, i.e., handling input data within strict time bounds,
a system should provide incremental processing where query results are fre-
quently and instantly updated as new data arrives. Systems should scale to
handle numerous co-existing queries at a time and exploit potential similarities
between the large number of standing queries. Furthermore, environment and
workload changes may call for adaptive processing strategies to achieve the best
query response time. Even if conventional DBMSs are powerful data manage-
ment systems, the hooks for building a continuous streaming application are not
commonly available in such systems.

DataCell balances at the edge between the database management systems

29



30 CHAPTER 2. BACKGROUND AND RELATED WORK

world and the data stream systems world. Recognizing all the nice features
of a modern database system, we decided to reconsider the e↵ort to implant
streaming capabilities within it. In the DataCell project we exploit, reuse,
redirect and extend the useful parts of the existing database technology, to
support a more complete query processing scenario, where the need of active
and passive processing co-exist.

In this chapter, we discuss relevant background knowledge and related work.
The reader can roughly go through the major research e↵orts of the past twenty
years that aimed to define and cope with the active query processing scenario.
We point out the main contributions of previous research works that originally
introduced the concept of continuous query processing and we compare and
place our contributions in the proper context. The interested reader can further
explore the rich background research area given the hints this chapter provides.

Particularly in this chapter, we recap the first attempts to define the new
needs of data streams and continuous query processing and the early works that
were oriented in this direction. The majority of the classical (as we know it to-
day) pure data stream processing systems started developing two decades after
the establishment of the database technology. We dedicate ample space to dis-
cuss the most important and characteristic stream processing systems from the
academic and commercial world, emphasizing on their architecture and compar-
ing their main characteristics with our work. In addition, we touch upon some
of the most interesting and important issues of stream processing, including dis-
cussion on specialized stream operators, incremental processing and multi-query
optimization techniques. We discuss recent work that shares a vision similar to
the one of DataCell, namely works that ideally want to tightly integrate on-line
and passive data processing. At the end of this chapter, we provide the nec-
essary background for the DataCell philosophy and implementation, describing
the backbone of our architecture, the MonetDB database system.

2.1 First Steps towards Real-time Processing

The continuously evolving database technology successfully undertakes a ma-
jor part of the information technology (IT) duties during the last few decades.
Database systems traditionally have been focusing on organizing and storing
structured data providing consistent and accurate query processing. These char-
acteristics helped to expand and establish their omnipresence in most of the
data management domains. However, the technological innovations naturally
bring new application requirements that eventually impose further functional
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requirements on database systems.
An example constitutes the real-time control applications that started emerg-

ing together with the establishment of the conventional database technology. In
this kind of application scenarios, the user desires the data management sys-
tem to actively control, monitor, and manage his data whenever a change is
performed. He expects that the system remains alert and automatically pro-
ceeds to the appropriate operations, that he has already defined, when a specific
condition becomes satisfied. General database integrity constraint enforcement
and business rules motivated the requirement for this new processing model.
However, conventional database management systems are built to act passively.
They o↵er the appropriate mechanism, to the users and the application pro-
grams, to create, modify and retrieve the stored data only after an explicit
request. The e↵ort to transform the passive, query-driven database system into
an active one, was the first notable attempt to address the requirements of the
monitoring applications, e.g., (Schreier et al., 1991; Sellis et al., 1989; Dayal
et al., 1988), etc.

Already in the early 1970s, the Data Base Task Group (DBTG) demon-
strated remarkable work in the development of database technology, by propos-
ing the CODASYL (Olle, 1978) data model. CODASYL is the network model
for databases, developed to handle many of the problems associated with flat-
file systems. The CODASYL data manipulation language (CODASYL Data
Description Language Committee, 1973) is one of the first to address the mon-
itoring requirements, adding a reactive feature that was not included in the
conventional database philosophy up to that time. It provides the appropriate
mechanism to automatically invoke the corresponding predefined stored proce-
dures when a specific situation arises. The ON clause below encapsulates this
functionality:

ON <command list> CALL <database procedure>

The database procedure, could be any arbitrary stored procedure, written in the
programming language COBOL. It is called and executed immediately after the
execution of the command list statement.

Query-By-Example (QBE) (Zloof, 1975; Zloof, 1977), a database query lan-
guage for relational database systems, is another popular work developed by
IBM in the mid of 1970s that provides a trigger facility for integrity constraints
checking. QBE allows users to define conditions associated with data modifica-
tion operations, such as insert, delete and update operations on tables or tuples.
If the condition is valid, the operation will commit, otherwise if it is false, the
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e↵ects of the operation are undone. In addition, the time trigger conditions are
evaluated at a specified time point or at specified time frequency (Zloof, 1981).

2.1.1 Triggers

One of the first data control mechanism, i.e., triggers, had already been encap-
sulated early in the relational DBMSs. A trigger subsystem was proposed in
the mid of 1970s for the pioneer System R relational database research project
(Eswaran and Chamberlin, 1975; Eswaran, 1976), that influenced the follow-up
database research and technology. The SQL standard committee made a ma-
jor e↵ort to support triggers and constraints (ISO-ANSI, 1990). Almost all the
(commercial) database systems, such as, Oracle, Microsoft SQL Server and DB2
include trigger mechanisms.

A trigger is a user defined stored procedure attached to a single database
table or view that is called implicitly and automatically executes when the
underlying data is modified in a specific way, i.e., when an INSERT, UPDATE,
or DELETE statement is issued against the associated table. The user should
also specify whether the trigger must occur BEFORE or AFTER the triggering
event or transaction bounds. The DBMS actively monitors the arrival of the
desired information and applies it to the database state.

The trigger mechanism was introduced to express and implement complex
business rules, which could not be expressed using integrity constraints directly.
Initially it was considered as a promising technology to address the require-
ments of new monitoring applications. However, it quickly proved inadequate
to support more complex scenarios; for instance, most DBMSs in their early
versions allowed only one trigger for each INSERT, UPDATE, or DELETE
data modification event for each table, while triggers over views were not al-
lowed at all. Triggers most likely was limited to one level, where the trigger
actions do not cause other triggers to be fired (even today, the modern DBMSs
can support only a specific depth of nested triggers, e.g., Oracle and Microsoft
SQL Server support nesting depth of 32 triggers, while Sybase supports nesting
depth of 16 triggers). Also, the existing systems of that period considered to be
weak on preventing errors coming from mutable tables. Scaling to millions or
just thousands of trigger conditions in a database, it becomes ine�cient to poll
the database periodically and check if any of the conditions are satisfied, e.g.,
(Abiteboul et al., 2005).

Taking all these factors into account, the plan to fully express the demanding
monitoring applications through immature triggers was soon abandoned and
researchers kept looking for new methods to support richer expressiveness and
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improved scalability.

2.1.2 Active Databases

The database research in the mid of 1980s started seriously looking at extending
the database technology with powerful rule-processing capabilities, leading to
the emergence of a new type of database systems, called active database systems
(ADBMSs).

ADBMSs were mainly centered around the concept of the trigger mechanism,
and seemed very promising to face the new challenges that the monitoring ap-
plications introduced, e.g., (Schreier et al., 1991; Sellis et al., 1989; Dayal et al.,
1988), etc. They were considered to be much more powerful than the conven-
tional DBMSs, since they could perform all the standard functionalities that
the passive databases provide, in addition to their encapsulated event-driven
architecture, that allows users and application programs to specify the desired
active behavior.

Active rules, also known as Event-Condition-Action (ECA-rules), tradition-
ally consist of the three following parts:

• Event: specifies the signal that causes the rule to be triggered.

• Condition: is checked when the rule is triggered. If it is satisfied, it
causes the rule’s execution.

• Action: specifies which further actions (updates) should be taken over
the data, and is executed when the rule is triggered and its condition is
true.

The triptych “when event, if condition, then action” describes in an oversimpli-
fied way the active databases’ processing model. In active relational databases,
events are modeled as changes of the state of the database, i.e., insert, delete
and update operations can trigger a reaction. In object-oriented systems, we
can define more general events, such as user-defined or temporal events (Bancil-
hon et al., 1988). The database users can define multiple active rules, that once
the system accepts them, it should continuously monitor the relevant events.

In general, the goal of active databases was to avoid unnecessary and resource
intensive polling in monitoring applications. Detailed surveys and books catalog
in detail the major e↵orts of active database research, e.g., (Widom and Ceri,
1996; Paton and Dı́az, 1999). In the next section we discuss an overview of a
characteristic research project, Alert system (Schreier et al., 1991).
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Alert

Many research projects, e.g., HiPAC (Dayal et al., 1988), Ariel (Hanson, 1996)
and POSTGRES rule system (Stonebraker et al., 1988; Stonebraker et al., 1989),
demonstrated that the active database technology was convenient for enforcing
business rules and general integrity constraints, which are going beyond key or
referential integrity constraints. One of the most notable research results is the
outcome of IBM’s e↵ort to transform the relational passive Starbust database
system, to an active DBMS, called Alert (Schreier et al., 1991).

Alert users are able to define active tables, a kind of append-only tables, in
which the tuples are never updated in-place and new tuples are added at the end.
Active queries are queries that range over active tables and their fundamental
di↵erence from passive queries is coming from cursor’s behavior. Tuples can be
added to an active table even after the cursor for an active query is opened and
they contribute to answering the query once they are inserted. Thus, the active
queries are defined over past, present, and future data, whereas the domain of
the passive queries is limited to past and present data. Active queries may be
associated to one or more active tables and on abstract user-defined objects, a
kind of views. Furthermore, users can express more complex query scenarios
by nesting and joining multiple active queries. These features make the Alert
architecture much more powerful than the trigger technology at that time was
encapsulated in the passive DBMSs. A nice property of the Alert system, is that
its rule language achieves full expressiveness with a minimal extension of SQL.
In this way, it reuses almost all of the existing semantic checking, optimization,
and execution implementations of the passive DBMS that it extends. The from
clause represents the triggering event, caused by an append to an active table,
the where clause specifies the condition, and the select clause the action that
should be taken.

2.1.3 DataCell vs Active Databases and Triggers

DataCell shares similar goals and concepts with triggers and active database sys-
tems. All try to extend and re-use the existing powerful conventional database
technology by embedding a reactive behavior. In particular active tables and
queries share commonalities with DataCell’s fundamental units, i.e., baskets
and factories (to be further explained in Chapter 3). However, the DataCell
model aim to be much more generic by allowing continuous queries to share
(i.e., access and modify) multiple baskets (as will be shown in Chapter 3), take
their input from other queries and so on, creating a network of queries inside
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the kernel where a stream of data and intermediate results flows through the
various queries.

DataCell adds support for specialized stream functionalities, i.e., incremental
processing. Such functionality is crucial, especially for modern high data volume
stream applications. The lack of e�cient incremental processing in most active
databases and databases with triggers, severely a↵ected query latency, and was
actually one of the reasons to convince architects to move from the database
model to the pure data stream processing model (Abiteboul et al., 2005).

Furthermore, even though active databases address and formulate the re-
quirement for reactive behavior and continuous monitoring, they did not after all
provide a scalable enough architecture to deal with frequent data updates, as the
pure data stream applications later demanded. DataCell is designed and built
on top of the extensible MonetDB kernel; the simple and clean stream-oriented
design of our architecture helps us inherit and maintain the original DBMS scal-
ability while at the same time combining it with conventional database features.
The end result is a stream system that scales well and it can do both continuous
queries and one-time queries (Liarou et al., 2009).

MonetDB exploits several modern database architecture trends in its design
and DataCell exploits and enhances these features for e�cient stream process-
ing. MonetDB is a column-store system that relies on operator-at-a-time bulk
processing and materialization of all (narrow) intermediate result columns. This
is a convenient and crucial feature to support DataCell’s incremental processing
requirement. On the contrary, relational active databases were built by extend-
ing traditional row store databases. This means that they used a tuple-at-a-time
volcano-style pipelining execution model, which at first glance seemed ine�cient
in providing intermediate result materialization for each query operator.

Furthermore, the internal DataCell scheduler, that handles and controls mul-
tiple co-existing (active) queries, dealing also with concurrency issues, is an
advanced model that scales much better than the plain trigger mechanism in
DBMSs. In the past, it was already observed that triggers do not scale in
terms of the number of triggers that an active database can support, leaving as
an alternative to implement scalable triggers outside the DBMS. The DataCell
scheduler on the other hand is an integral part of the kernel and thus can better
co-ordinate and exploit scheduling opportunities and at a lower cost.
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2.2 Real-time Databases

Real-time database systems (RTDBSs), as their name implies, also address the
requirement for real-time query processing, e.g., (Kao and Garcia-Molina, 1993;
Abbott and Garcia-Molina, 1989; Abbott and Garcia-Molina, 1992; Haritsa
et al., 1990). RTDBSs can be viewed as a fusion between real-time systems and
DBMSs; they extend traditional database technology, adding time constraints
and deadlines to transactions. Apart from such features, RTDBSs also introduce
and deal with transaction time constraints and temporal validity of data.

In an RTDBS the user specifies when a transaction could start and more im-
portantly when it should finish. Thus, we should process time-sensitive queries
and temporally valid data, dealing with priority query scheduling and concur-
rency control issues. In such an environment, it is di�cult to guarantee all time
constraints. Thus, the scheduling policy tries to minimize the number of vio-
lated time constraints. In real-time databases, it is very important to consider
and specify what the system should do when transaction deadlines are not met.
The transaction scheduler should allocate available system resources, e.g., CPU
cycles, in order to try to meet the specified transaction constraints. However,
in many cases the knowledge of resource requirements may not be available
up-front and dynamic changes on the workload may occur. In this case, the
system should prevent the forthcoming threat of missing multiple transaction
deadlines, and should proceed with adaptive decisions and overloading tech-
niques. Di↵erent policies then are applied, e.g., rejection of new transactions,
early termination of already running ones, etc.

Data stream management systems share similar concerns and goals with
RTDBSs. In a typical data stream application, we should evaluate the waiting
continuous queries, as soon as possible, trying to minimize the query latency.
Scheduling proposals for real-time databases, that are based either on static
criteria, e.g., priority-driven, or on dynamic criteria, can also be applied in
stream processing policies. Real-time transactions di↵erentiate from continuous
queries in data stream systems, to the degree that the latter only allow read-only
operations over data streams, while a real-time transaction may involve both
read and write operations. This functionality complicates the processing policy
once concurrent transactions co-exist. In real-time databases, transactions are
usually sporadic while in data streams systems we expect that the continuous
queries may stay for a long time in the system. In case we are dealing with hard
real-time transactions, we may end up aborting entire transaction units, when
we come through overloading conditions, while stream applications setting firm
deadlines could allow us to proceed with data volume minimizing (and thus
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resorting to approximate answers).
As modern data stream systems developed over the years, they evolved

to specialized stream engines with features missing from traditional real time
databases. Such an example is the feature of incremental processing, i.e., win-
dow based queries. Such queries allow a system to keep answering queries with-
out blocking the query processing for an “infinite” amount of time. For example,
this is useful for blocking operators, or simply for long running queries over large
amounts of data. A whole research area was developed then in order to study
how to define the proper semantics over such window queries and how to ef-
ficiently answer such queries at run time, with multiple concurrent continuous
queries, etc. We also explore incremental query processing in the context of
window queries, in the DataCell architecture at Chapter 5.

2.3 Publish-Subscribe Systems

Publish/subscribe (in short pub/sub) systems are also addressing the monitoring
requirements of modern applications and to some extent are related to the area
of data stream processing systems. They are mainly applied on a distributed
setting and allow simple data and query models.

In pub/sub systems, subscribers register their interest in an event or pattern
of events, while publishers, publish available information without addressing it
to specific recipients. Typically, a very large number of autonomous computing
nodes pool together their resources and rely on each other for data and services.
The coordinator messaging infrastructure is responsible to propagate the appro-
priate messages and notifications to all interested waiting subscribers, once a
related resource becomes available. The information to be shared are stored at
the publisher’s side, and after being discovered by an interested party, they are
downloaded using a protocol similar to HTTP. This asynchronous and loosely
coupled messaging scheme is a far more scalable architecture than point-to-point
alternatives.

Publish/subscribe systems share the same goal: to scale in terms of subscrip-
tion management, and to assure e�cient request-event matching. But beyond
this basic goal, there are important di↵erences among the various proposed sys-
tems regarding the metadata kept at each network node, the topology of the
network, the placement of the shared files, the routing algorithms for queries
and replies, the degree of privacy o↵ered to its users, etc.

Di↵erent architectures and pub/sub processing models have been proposed;
for instance, there are subject-based or content-based systems, following a push-
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based, pull-based, or both models, and being implemented in a client-server
or peer-to-peer (P2P) architecture. Prominent examples of publish/subscribe
applications constitute peer-to-peer databases (Huebsch et al., 2003; Gedik
and Liu, 2003; Loo et al., 2004; Fausto et al., 2002), e-learning systems like
EDUTELLA (Nejdl et al., 2002) and ELENA (Simon et al., 2003), semantic
blogging systems like (Karger and Quan, 2005) and RSS feeds, and parallelized
systems like the SETI@home (SETI@home, 1999), the Folding@home (Fold-
ing@home, 2000) and the most recent LHC@home (LHC@home, 2004) where a
large task is broken into small subtasks and each one is assigned to a di↵erent
node that o↵ers computing cycles. File-sharing systems such as Napster (Nap-
ster, 1999), Gnutella (Gnutella, 2000) and KazaA (KazaA, 2001) have made
this model of interaction very popular.

2.4 The New Era of Data Stream Management
Systems

In the previous sections, we discussed several designs and trends towards con-
tinuous query processing. Active databases, real time databases and trigger
mechanisms have all been essential towards developing the streaming technol-
ogy. None of them, though, was fully prepared for the new requirements of
modern streaming query processing applications. Data stream management
systems nowadays should handle input data within strict time bounds, and
provide instant answers and reactions as new data arrives. Incremental query
processing, window-based query processing, scaling to thousands of co-existing
queries, etc. are important in a stream system. Even if conventional DBMSs
are powerful data management systems, the hooks for building a continuous
streaming application are not commonly available in that systems.

Given these di↵erences, and the unique characteristics and needs of con-
tinuous query processing, the pioneering Data Stream Management Systems
(DSMS ) architects naturally considered that the existing DBMS architectures
were inadequate to achieve the desired performance. Another aspect is that
the initial stream applications had quite simple requirements in terms of query
processing. This made the existing DBMS systems considered overloaded with
functionalities. These factors led researchers to design and build new archi-
tectures from scratch. Several DSMS solutions have been proposed over the
last years giving birth to very interesting ideas and system architectures. In
this section, we present some characteristic DSMSs research prototypes and we
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compare the main points of these class of systems with our work.

2.4.1 Aurora

Aurora (Carney et al., 2002; Abadi et al., 2003a; Abadi et al., 2003b; Babcock
et al., 2004; Balakrishnan et al., 2004) is a data stream management system,
that was developed between 2001 to 2004, as a result from the collaboration of
three research groups from MIT, Brown University and Brandeis University.

Aurora uses the boxes and arrows paradigm, followed in most workflow sys-
tems. Each box represents a query operator and each arc represents a data flow
or a queue between the operators. Each query is built out of a set of opera-
tors and all submitted queries constitute the Aurora query network. SQuAl is
Aurora’s query algebra that provides nine stream-oriented primitive operations,
i.e., Filter, Map, Union, Aggregate, Join, BSort, Resample, Read, and Update.
Out of these operators users construct queries. Each operator may have mul-
tiple input streams (i.e., union), and could give its output to multiple boxes
(i.e., split). Tuples flow through an acyclic, directed graph of processing opera-
tions. At the end, each query converges to a single output stream, presented to
the corresponding application. Aurora can also maintain historical storage, to
support ad hoc queries.

The query network is divided into a collection of n sub-networks. The deci-
sion is taken by the application administrator, who decides where to insert the
connection points. Connection points indicate the network modification points
and specify the query optimization limits. Thus, new boxes can only be added
to or deleted from the connection network points over time. The Aurora opti-
mizer, instead of trying to optimize the whole query graph at once, it optimizes
it piece-by-piece. It isolates each sub-network, surrounded by connection points,
individually from the rest of the network and optimizes it in a periodic manner.

Figure 2.1 illustrates the high-level system model of Aurora system, as it
was originally presented by the authors in their publications (Carney et al.,
2002). The router connects the system to the outside world. It receives the
input data stream from the external data sources, e.g., sensors, and from inside
boxes, and if the query processing is completed it forwards the tuples to external
waiting sources, otherwise it re-feeds them to the storage manager for further
processing. The storage manager stores and retrieves the data streams on in-
memory bu↵ers between query operators. Also it maintains historical storage,
to serve potential ad-hoc queries. A persistence specification indicates exactly
for how long the data is kept.
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8

Figure 2.1: Aurora system architecture

Otherwise, the router forwards the tuple to the storage manager to be placed on proper queues for

further processing.

The storage manager is responsible for e�cient storage and retrieval of data queues on arcs

between query operators. It manages the in-memory bu↵er pool that stores stream tuples for

immediate use by box processors as well as the persistent store that keeps history for processing

potential ad hoc queries.

The scheduler is the core component that makes decisions about operator execution order. It

selects an operator with waiting tuples in its queues and executes that operator on one or more

of the input tuples [25]. There is one processor per box type that implements the functionality

for the corresponding query operator. When invoked by the scheduler, the box processor executes

the appropriate operation and then forwards the output tuples to the router. The scheduler then

ascertains the next processing step and the cycle repeats.

The QoS monitor continually monitors system performance and triggers the load shedder if it

detects a decrease in QoS. The load shedder is responsible for handling overload due to high input

rates [93]. It reads in system statistics and query network description from the catalogs, and makes

certain modifications on the running query plans to bring the demand on CPU down to the available

capacity level.

2.1.2 Data Model

Aurora models a stream as an append-only sequence of tuples with a uniform schema. In addition

to application-specific data fields, each tuple in a stream also carries a header with system-assigned

fields. These fields are hidden from the application and are used internally by the system for QoS

Figure 2.1: Aurora System Architecture (Carney et al., 2002)

The scheduler is the core Aurora component (Babcock et al., 2004). It de-
cides when an operator should be executed, feeding it with the appropriate
number of queuing tuples. In Aurora, there is one box processor per operator
type, this part is responsible for executing a particular operator when the sched-
uler calls it. Then, the box operator forwards the output tuples to the router.
The scheduler continuously monitors the state of the operators and the bu↵ers
and repeats this procedure periodically.

The designers of Aurora dedicated a big part of their research on address-
ing methods that guarantee Quality of Service (QoS) requirements when the
system becomes overloaded (Tatbul, 2007). They proposed load shedding tech-
niques that attach to the query network a kind of system-level operators that
selectively drop tuples. Aurora applies such operators when the rate on in-
coming streams overwhelm the stream engine, trying to balance between the
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expected side-e↵ect on result accuracy meeting QoS application requirements.
Later Medusa (Zdonik et al., 2003) and Borealis (Abadi et al., 2005) extended
the single-site Aurora architecture to a distributed setting. In 2003, the original
research prototype was commercialized into a start-up company named Stream-
Base Systems (StreamBase Systems, Inc, 2003).

2.4.2 STREAM (STanford stREam datA Management)

STREAM system (Motwani et al., 2003; Arasu et al., 2003) is another data
stream processing research prototype that was designed and developed at Stan-
ford university from 2001 to 2006. STREAM provides a declarative query lan-
guage, called CQL (DBL, ), that allows queries which can handle data both from
continuous data streams and conventional relations. CQL extends SQL by al-
lowing stream and relational expressions and introducing window operators. In
CQL there are three classes of operators, (a) the stream-to-relation operators,
that produce a relation from a stream (sliding windows), (b) the relation-to-
relation operators, that produce a relation from one or more other relations,
such as in relational algebra and SQL and (c) relation-to-stream operators, i.e.,
Istream, Dstream, and Rstream, that produce a stream from a relation. There
are also three classes of sliding window operators, i.e., time-based, tuple-based,
and partitioned. However, in practice it does not support sliding windows with
a slide bigger than a single tuple.

Also in STREAM, operators read from and write to a single or multiple
queues. Furthermore, synopses are attached to operators and store their in-
termediate state. This is useful when a given operator needs to continue its
evaluation over an already processed input. For instance, when we need to
maintain intermediate results, i.e., the content of a sliding window or the rela-
tion produced by a subquery. Synopses are also used to summarize a stream
or a relation when approximate query processing is required. Scheduling in
STREAM also happens at the operator level as it used to in stream systems;
either it is simple scheduling strategy (Motwani et al., 2003) like round-robin or
FIFO or the more sophisticated Chain algorithm (Babcock et al., 2003). The
scheduling methods in STREAM focus on providing run-time memory mini-
mization. STREAM also includes a monitoring and adaptive query processing
infrastructure called StreaMon (Babu and Widom, 2004), which consists of three
components, i.e., the Executor, that runs query plans and produces results, the
Profiler, that collects statistics about stream and query plan characteristics, and
the Reoptimizer, that takes the appropriate actions to always ensure that the
query plan and memory usage are optimal for the current input characteristics.
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Once there is not enough CPU or memory available, the system proceeds with
approximate query processing, trying to handle the query load by sacrificing
accuracy. It introduces random sampling operators into all query plans, in a
way that the relative error is the same for all queries. STREAM deals with
memory-limitations also by discarding older tuples from the window joins oper-
ators, leaving free space for new data. The goal here is to maximize the size of
the resulting subset.
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2.4.3 Telegraph-CQ

TelegraphCQ (Chandrasekaran et al., 2003) is a continuous query processing
system built at University of California, Berkeley. The main focus is on adaptive
and shared continuous query processing over query and data streams. The
team in Berkeley, built TelegraphCQ based on previous experience obtained
while developing the preliminary prototypes, CACQ (Madden et al., 2002) and
PSoup (Chandrasekaran and Franklin, 2002).

PSoup addresses the need for treating data and queries symmetrically. Thus,
it allows new queries to see old data and new data to see old queries. This
feature is passed to the TelegraphCQ architecture as well. Furthermore, Tele-
graphCQ successfully addresses and resolves important limitations that were not
addressed in previous prototypes, e.g., it deals with memory and resource limita-
tions, trying to guarantee QoS over acceptable levels and focuses on scheduling
and resource management of groups of queries. TelegraphCQ constructs query
plans with adaptive routing modules, called Eddies (Avnur and Hellerstein,
2000). Thus, it is able to proceed to continuous run-time optimizations, dy-
namically adapting to the workload. Eddies modules adaptively decide how to
route data to appropriate query operators on a tuple-by-tuple basis.

TelegraphCQ shares a similar goal and vision as the one of DataCell. It
tries to leverage the infrastructure of a conventional DBMS, by reusing a big
part of the open source PostgreSQL code base. With minimal changes at par-
ticular components, it tries to use the front-end piece of code that PotegreSQL
already o↵ers, the Postmaster, the Listener, the System Catalog, the Query
Parser and the PostgreSQL Optimizer. However, the TelegraphCQ developers
proceeded to significant changes on the deeper PostgreSQL parts, such as the
Executor, the Bu↵er Manager and the Access Methods, to make them compati-
ble with the unique requirements of stream processing. Figure 2.2 illustrates an
overview of the TelegraphCQ architecture as it is originally presented in (Chan-
drasekaran et al., 2003). The rightmost oval part is the most solid contribution
of PostgreSQL to the new system architecture. The processes included in there,
are connected using a shared memory infrastructure, and the generated query
plans are placed in a query plan queue. From there, the Executor picks them
up to proceed with the actual processing, trying first to classify the plans into
groups for sharing work. The query results are continuously placed in the output
queues. The Wrapper mechanism allows data to be streamed into the system.

As we already mentioned, TelegraphCQ follows a similar approach to Dat-
aCell, by trying to exploit the PostgreSQL infrastructure. However, there are
significant di↵erences between PostgreSQL and MonetDB that significantly af-
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fect the whole streaming architectures. DataCell reuses the original storage and
execution engine of the MonetDB kernel, elevating the streaming behavior at
the embedded scheduler module. In contrast, TelegraphCQ needs new storage
and access methods. In addition, in DataCell we do not follow a tuple-at-a-time
processing method, instead we favor batch execution which brings high per-
formance and scalability. Tuple-at-a-time has a significant functional overhead
that severely hinders scalability. On the other hand, bulk processing for streams
is a new area which brings performance and additional research questions as to
how to properly tune the degree of batch processing throughout query plans.
Furthermore, DataCell exploits array based processing as it builds on top of the
pure column-store infrastructure of MonetDB. Arrays together with bulk pro-
cessing are heavily exploited for e�cient incremental window-based processing
in DataCell. In contrast, TelegraphCQ is built on top of a typical row-store
infrastructure.

2.4.4 Other Data Stream Management Systems

The unique requirements of monitoring applications, establish a new research
field that demonstrates interesting results on new system architectures, query
languages, specialized algorithms and optimizations. So far, we presented three
characteristic e↵orts from the academic world. However the research e↵orts do
not stop there; plenty of other interesting stream systems have been presented
to related journals and conferences, and some of them found their way to the
commercial world.

A noteworthy result is Gigascope (Cranor et al., 2003), a lightweight stream
processing system that was developed in AT&T to serve network applications. It
emerged from requirements of the company itself, e.g., tra�c analysis, network
monitoring and debugging.

NiagaraCQ (Chen et al., 2000) is an XML-based continuous query system
that focuses on query optimization to improve scalability. This system tries to
exploit query similarities to group queries and potentially save processing cost.
The grouping process happens incrementally and once new queries are added to
the system, they find their place in the appropriate groups.

Di↵erent language semantics are introduces in the Cayuage system, devel-
oped in Cornell university. Cayuage is a stateful publish/subscribe system based
on a non-deterministic finite state automata (NFA) model.

Big vendors like Microsoft (Ali et al., 2009), IBM (Gedik et al., 2008) and
Aleri/Coral8 (Coral8, 2007) have also become active in the data stream area
during the last few years, developing high performance complex event processing
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systems. Their focus is on pure stream processing, providing additional external
access to historical data. Furthermore, they have moved their architectures in
distributed settings to cope with the increasing data requirements.

2.4.5 DataCell vs Traditional Data Stream Architectures

In this chapter, we presented some well known data stream management sys-
tems. Each one contributed in a unique way to the broad research area of data
streams. However all of them follow the same philosophy; they are built from
scratch, dismissing the conventional database technology. DataCell fundamen-
tally di↵ers from existing stream technology, by building the complete stream
functionalities on top of the storage and execution engine of a modern DBMS
kernel. In this way, it opens an interesting path towards exploiting and merging
technologies from both worlds.

The design of DataCell allows to exploit batch processing when the applica-
tion allows it. Tuple-at-a-time processing, used in most stream systems, incurs
a significant overhead while batch processing provides the flexibility for better
query scheduling, and exploitation of the system resources. This point has also
been nicely exploited in (Lim et al., ) but in the context of the DataCell, build-
ing on top of a modern DBMS, it brings much more power as it can be combined
with algorithms and techniques of relational databases.

In addition, DataCell exploits the batch processing logic during scheduling.
It tries to keep together as many query operators as possible. In this way, it
wraps in a single factory all or a subset of the operators that belong to the
same query plan for a given continuous query. In any case, it avoids scheduling
one operator at a time and tries to schedule groups of operators that can be
executed together. A factory may contain (parts of) query plans from more than
one queries. In this way, we increase scalability by minimizing the scheduling
overhead, i.e., by reducing the number of distinct units that the scheduler should
monitor and orchestrate at each moment and by reducing all the side-e↵ects that
this process entails, e.g., access to storage units, switching function calls. Aurora
also recognizes the overhead that its first single-operator scheduling approach
causes, and introduces the notion of superboxes (Babcock et al., 2004). There,
a sequence of boxes is scheduled and executed as an atomic group. However,
it allows only the construction of superboxes that conclude to an output box,
without giving the flexibility to group together intermediate groups of operators,
as DataCell does.

Furthermore, DataCell tries to fully exploit the state-of-the-art modern
database software stack that MonetDB o↵ers. This fact brings a number of
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fundamental di↵erences between DataCell and the majority of pure data stream
systems. For example, one such di↵erence is that DataCell does not use bu↵ers
to temporary hold the flowing stream tuples, and consequently does not require
the existence and maintenance of a separate storage manager component. On
the contrary, it uses baskets, a kind of temporary main-memory tables which are
more powerful than the simple bu↵er structure and more lightweight than the
conventional database tables. In Section 3, we present the key components of
our architecture and discuss in further detail what are the di↵erences between
basket and MonetDB tables.

The DataCell architecture interweaves basket and tables in the most natural
way, since it develops both technologies in the same kernel. In this way, we can
support queries that require data access from both streams and tables, and
generate query plans having all this information in our plate already at the
generation and optimization phase. Many other pure stream systems address the
modern application requirements for access to both storage units. However, they
reach their goal by either connecting a specialized DBMS to a stream engine, or
by creating simplistic storage unites (compared to a full-blown database system)
and execution mechanism that mimic the database work.

In DataCell, we manage to deal with crucial stream processing challenges,
like the incremental window-based processing, by re-using most of the given
database infrastructure. By introducing only small language extensions in SQL,
we can re-use the SQL front-end and slightly extend the parser that MonetDB
already o↵ers. In order to maintain and reuse the generic storage and execution
model of the DBMS, we elevate the stream processing at the query plan level.
Proper optimizer rules, scheduling and intermediate result caching and reuse, al-
low us to modify the DBMS query plans for e�cient incremental processing. In
addition, we avoid to re-design and implement from scratch specialized stream
operators as the pure stream systems do. Instead, by introducing the appro-
priate scheduling mechanisms we manage to achieve full stream functionalities
using the e�cient scalable operators of MonetDB. In this way, shared processing
in our case does not happen at the operator level but also at the factory level,
trying to maintain and reuse (batches of) intermediate results.

In this thesis we took a completely di↵erent route by designing a stream
engine on top of an existing relational database kernel. Such an approach was
considered a failure in the past due to the fact that databases where to slow
in handling streams. Here, we show that DataCell achieves high performance,
scales and naturally combines continuous querying for fast reaction to incoming
data with traditional querying for access to existing data.



2.5. A NEW STREAM PROCESSING PARADIGM 47

2.5 A new Stream Processing Paradigm

In the previous section, we discussed the main philosophy of the specialized
stream engines that were developed to e�ciently handle continuous query pro-
cessing in bursty data arrival periods. However, the technological evolutions
keep challenging the existing architectures with new application scenarios. In
recent years, a new processing paradigm is born (Liarou et al., 2009; Qiming
and Meichun, 2010; Franklin et al., 2009) where incoming data needs to quickly
be analyzed and possibly be combined with existing data to discover trends and
patterns. Subsequently, the new data enters the data warehouse and is stored
for further analysis if necessary. This new paradigm requires scalable query
processing that combines continuous and conventional processing.

The Large Synoptic Survey Telescope (LSST) (LSST, 2010) is a grandiose
paradigm. In 2018 the astronomers will be able to start scanning the sky from
a mountain-top in Chile, recording 30 Terabytes of data every night which in-
crementally will lead a 150 Petabyte database (over the operation period of ten
years). LSST will be capturing changes to the observable universe evaluating
huge statistical calculations over the entire database. Another characteristic
data-driven example is the Large Hadron Collider (LHC) (LHC, 2010), a parti-
cle accelerator that is expected to revolutionize our understanding for the uni-
verse, generating 60 Terabytes of data every day (4GB/sec). The same model
stands for modern data warehouses which enrich their data on a daily basis cre-
ating a strong need for quick reaction and combination of scalable stream and
traditional processing (Winter and Kostamaa, 2010). However, neither pure
database technology nor pure stream technology are designed for this purpose.

Truviso Continuous Analytics system (Franklin et al., 2009), a commercial
product of Truviso, is another recent example that follows the same approach
as DataCell. Part of the team that was working on the TelegraphCQ project,
proceeded to the commercialized version of the original prototype. They extend
the open source PostgreSQL database (PostgreSQL, 2012) to enable continuous
analysis of streaming data, tackling the problem of low latency query evalua-
tion over massive data volumes. TruCQ integrates streaming and traditional
relational query processing in such a way that ends-up to a stream-relational
database architecture. It is able to run SQL queries continuously and incre-
mentally over data while they are still coming and before they are stored in
active database tables (if they). TruCQ’s query processing outperforms tradi-
tional store-first-query-later database technologies as the query evaluation has
already started when the first tuples arrive. It allows evaluation of one-time
and continuous queries as well as combinations of both query types.
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Another recent work, coming from the HP Labs (Qiming and Meichun,
2010), confirms the strong research attraction for this trend. They define an
extended SQL query model that unifies queries over both static relations and
dynamic streaming data, by developing techniques to generalize the query en-
gine. They extending the PostgreSQL database kernel (PostgreSQL, 2012),
building an engine that can process persistent and streaming data in a single
design. First, they convert the stream into a sequence of chunks and then con-
tinuously call the query over each sequential chunk. The query instance never
shuts down between the chunks, in such a way that a cycle-based transaction
model is formed.

The main di↵erence of DataCell over the above two related e↵orts lies in
the underlying architecture. DataCell builds over a column-store kernel using a
columnar algebra instead of a relational one, bulk processing instead of volcano
and vectorized query processing as opposed to tuple-based. Here we exploited
all these architectural di↵erences to provide e�cient incremental processing by
adapting the column-store query plans.

2.6 Data Stream Query Languages

The unique monitoring application requirements, brought new data manage-
ment architectures and consequently the need for new querying paradigms. In
the literature we distinguish three classes for query languages that define the
proper data streaming semantics.

Declarative

Many stream systems define and support languages that maintain the declar-
ative and rich expressive power of SQL. A characteristic example is CQL (for
Continuous Query Language) (DBL, ), which is introduced and implemented in
the STREAM prototype (Motwani et al., 2003; Arasu et al., 2003). Apart from
streams, CQL also includes relations. Thus, we can write queries from each
category and queries that combine both data types as well. In CQL, we have
three types of operators: the relation-to-relation operators, that SQL already
o↵ers, the stream-to-relation operators, that reflect the sliding windows, and the
relation-to-streams operators, that produce a stream from a relation. There, we
also have three classes of sliding window operators in CQL: time-based, tuple-
based, and partitioned windows. We can denote a time-based sliding window
of size T on a stream S, with the expression [Range T]. A tuple-based sliding
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window of size N on a stream S is specified by following the reference to S in
the query with [Rows N].

GSQL is another SQL-like query language, developed for Gigascope to ex-
press queries for network monitoring application scenarios. GSQL is a stream-
only language, where all inputs to a GSQL operator should be streams and the
outputs are streams as well. However, relations can be created and manipulated
using user-defined functions. Each stream should have an ordering attribute,
e.g., timestamp. Only a subset of the operators found in SQL are supported by
Gigascope, i.e., selections, aggregations and joins of two streams. In addition
to these operators, GSQL includes a stream merge operator that works as an
order-preserving union of ordered streams. In GSQL, only landmark windows
are supported directly, but sliding windows may be simulated via user-defined
functions.

StreaQuel is the declarative query language proposed and used in Tele-
graphCQ prototype. It supports continuous queries over a combination of tables
and data streams. By using a for-loop construct with a variable t that moves
over the timeline as the for-loop iterates, we can express the sequence of win-
dows over which the user desires the answers to the query. Inside the loop we
include a WindowIs statement that specifies the type and size of the window
over each stream. This way, snapshot, landmark and sliding window queries can
be easily expressed.

Procedural

A di↵erent approach to declarative SQL-like query languages, is a procedural
one. For instance in Aurora, the developers proposed SQuAl (for Stream Query
Algebra), a boxes-and-arrows query language. There, the user through a graph-
ical interface draws a query plan, placing boxes (i.e., operators) and arrows
(i.e., data streams) in the appropriate order, specifying how the data should
flow through the system. SQuAl accepts streams as inputs and returns streams
as output. However, it gives the option to the user to include historical data to
query processing through explicitly defined connection points.

2.7 The MonetDB System

In this section, we provide the necessary background for the rest of our presen-
tation, briefly describing the backbone of the DataCell architecture, the Mon-
etDB database system. MonetDB (MonetDB, 2012) is an open-source column-
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oriented DBMS, developed at the database group of CWI (Centrum Wiskunde
& Informatica) in Amsterdam, the Netherlands, over the past two decades.

Row-store vs. Column-store architecture

MonetDB is a full fledged column-store engine; thus it stores and process data
one column at a time as opposed to one tuple at a time that traditional row-
stores do.

Let us first clarify what are the main di↵erences between the two directions.
A row-oriented database system stores all of the values per row from a given
table together. The processing model in a row-store is typically based on the
volcano model, i.e., the query plan consumes one tuple at a time. Each tuple
goes all the way through every operator in the plan, before we move on to the
next tuple.

On the contrary, column-oriented DBMSs are inspired by the Decomposi-
tion Storage Model (DSM) (Copeland and Khoshafian, 1985), storing data one
column at a time. In this way, the system can benefit a lot in terms of I/O
for queries that require to access only part of a table’s attributes and not the
whole table. Assume a table representing students in a university’s database.
This table will typically consist of a number of attributes, i.e., first name, last
name, date of birth, student ID, address, department, etc. Now let’s say that
the secretary of the university wants to analyze the data by posing the following
queries: find the average grades of the students per department, find the num-
ber of students that have exceeded the normal studying period, find the average
age of students per department, etc. In this kind of queries we access only a
part of the table “students”. In order to answer such queries in a row store
architecture we would need to load the whole table from disk to memory. On
the other hand, in a column-store architecture we only load the data (columns)
each query requests.

In general, row-store architectures are most appropriate when the database
is mostly used for online transaction processing (OLTP). There, we expect a
large number of short on-line transactions. On the other side, column-store ar-
chitectures are most appropriate for applications that handle analytical queries
for online analytical processing (OLAP). There, we expect relatively low volume
of transactions while queries are often very complex and involve aggregations
but usually focus on a subset of a table’s attribute.
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The MonetDB Storage Model

In MonetDB, every n-ary relational table is represented as a collection of Binary
Association Tables called BAT s (Boncz et al., 1998). A BAT represents a
mapping from an oid-key to a single attribute attr. Its tuples are stored
physically adjacent to speed up its traversal, i.e., there are no holes in the
data structure. For a relation R of k attributes, there exist k BATs, each
BAT storing the respective attribute as (key,attr) pairs. The system-generated
key identifies the relational tuple that attribute value attr belongs to, i.e., all
attribute values of a single tuple are assigned the same key. For base tables, they
form a dense ascending sequence enabling highly e�cient positional lookups.
Thus, for base BATs, the key column is a virtual non-materialized column. For
each relational tuple t of R, all attributes of t are stored in the same position
in their respective column representations. The position is determined by the
insertion order of the tuples. This tuple-order alignment across all base columns
allows the column-oriented system to perform tuple reconstructions e�ciently
in the presence of tuple order-preserving operators. Basically, the task boils
down to a simple merge-like sequential scan over two BATs, resulting in low
data access costs through all levels of modern hierarchical memory systems.

The MonetDB Execution Model

In MonetDB, SQL queries are translated by the compiler and the optimizer into
a query execution plan that consists of a sequence of relational algebra operators.
Each relational operator corresponds to one or more MAL instructions, while
each MAL instruction performs a single action over one or more columns in a
bulk processing mode.

MonetDB is a late tuple reconstruction column-store. Thus, when a query
is fired, the relevant columns are loaded from disk to memory but are glued
together in a tuple N -ary format only prior to producing the final result. Inter-
mediate results are also materialized as temporary BATs in a column format.
We can e�ciently reuse intermediate results by recycling pieces of (intermedi-
ate) data that are useful for multiple queries (Ivanova et al., 2009). Also, in
Chapter 5 and (Liarou et al., 2012a) we show that the bulk processing model
of MonetDB and the materialized intermediate results are important compo-
nents in our e↵ort to support incremental stream processing for window-based
continuous queries.
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Let us now see a concrete example. Assume the following SQL query:

SELECT R.c
FROM R
WHERE R.a BETWEEN 5 AND 10
AND R.b BETWEEN 9 AND 20;

This query is translated into the following (partial) MAL plan:

Ra1 := algebra.select(Ra, 5, 10);
Rb1 := algebra.select(Rb, 9, 20);
Ra2 := algebra.KEYintersect(Ra1, Rb1);
Rc1 := algebra.project(Rc, Ra2);

The first operator, algebra.select(Ra,v1,v2), searches the base BAT Ra

for attributes with values between v1 and v2. For each qualifying attribute
value, the respective key value (position) is included in the result BAT Ra1.
Since selections happen on base BATs, intermediate results are also ordered
in the insertion sequence. In MonetDB, intermediate results of selections are
simply the keys of the qualifying tuples, thus the positions of where these tuples
are stored among the column representations of the relation. In this way, given a
key/position we can fetch/project (positional lookup) di↵erent attributes of the
same relation from their base BATs very fast. Since both intermediate results
and base BATs have the attributes ordered in the insertions sequence, MonetDB
can very e�ciently project attributes by having cache-conscious reads.

As we mentioned above, each MAL instruction is internally executed in a
bulk processing way. The implementation at the C code level of the MAL
instruction Ra1 := algebra.select(Ra,v1,v2) is as follows:

for (i = j = 0; i < n; i++)
if (Ra.tail[i] >= v1)
if (Ra.tail[i] =< v2)
Ra1.tail[j++] = i;

With tight for-loops in BAT algebra operators, we have the advantage of
high instruction locality that minimizes the instruction cache miss problem.

The MAL operator algebra.KEYintersect(Ra1,Rb1) is a tuple reconstruc-
tion operator that performs the conjunction of the selection results by returning
the intersection of keys from Ra1 and Rb1 columns. Due to the order-preserving
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selection, both Ra1 and Rb1 are ordered on key. Thus, both intersection and
union can be evaluated using cache-, memory-, and I/O-friendly sequential data
access. The results are ordered on key, too, ensuring e�cient tuple reconstruc-
tions.

Finally, the MAL operator algebra.project(Rc,Ra2) returns all key-attr
pairs residing in base BAT Rc at the positions specified by Ra2. This is a tuple
reconstruction operation. Iterating over Ra2, it uses cache-friendly in-order
positional lookups into Ra2.

The MonetDB Software Stack

The MonetDB query processing scheme consists of three software layers. The
top layer is formed by the query language parser that outputs a logical plan ex-
pressed in MAL. The code produced by MonetDB/SQL is passed and massaged
by a series of optimization steps, denoted as an optimizer pipeline. The MAL
plans are transformed into more e�cient plans enriched with resource manage-
ment directives. The pipeline to be used is identified by the SQL global variable
optimizer, which can be modified using a SQL assignment.
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The extensible design of MonetDB opens the traditionally closed and mono-
lithic query optimization and execution engine, providing a modular multi-tier
query optimization framework. Optimizer pipelines in MonetDB can be con-
figured and extended to e↵ectively exploit domain-specific data and workload
characteristics.

At the bottom of the MonetDB software stack there is the MAL interpreter.
It contains the library of highly optimized implementation of the binary re-
lational algebra operators. At the run-time the MonetDB engine takes into
account collected statistics of the participant BATs and it is able to choose
the best evaluation algorithm (physical operator) for each logical operator. For
example, once it comes to the execution of the MAL operator

Re1:=algebra.join(Ra1,Rb1);

based on the size of Ra1 and Rb1 columns, the engine may decide to execute
the hash join algorithm while in another case (with di↵erent data and statistics
in the corresponding columns) it may execute the sort merge join algorithm.

In Figure 2.3, we show the MonetDB architecture as a series of abstraction
layers. The interested reader can find more details on MonetDB in (MonetDB,
2012). In this thesis, we implement DataCell in the heart of MonetDB. Our
implementation represents a set of new optimization rules, operators, algorithms
and data structures that cooperate with the existing MonetDB features to give
the desired result.

2.8 Summary

In this chapter, we briefly discussed the information technology history, touching
on major attempts to define and support monitoring applications. We discussed
the first e↵orts to support real-time processing applications which came through
the conventional database technology. Then, we saw how the data explosion
and the need for sophisticated near-real time analysis brought the genesis of
specialized data streams management systems. Today, we are in an era where
the need to tightly combine both database and data stream technologies is
bigger than ever. Through this short survey we tried to highlight the major
point that makes DataCell a unique and novel research path. Finally, we give
the necessary background on the MonetDB system, which is the backbone of
the DataCell architecture.

In the following chapters we introduce in detail the DataCell architecture,
the DataCell query language and how DataCell handles specialized stream pro-
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cessing requirements, i.e., incremental window processing. In the last chapter
of this thesis, we summarize the major points of our architecture and discuss
open research directions that deserve thorough study and will bring us closer to
a scalable integrated system.
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Chapter 3

DataCell Architecture⇤

3.1 Introduction

This chapter introduces the basic DataCell architecture. A system that nat-
urally integrates database and stream query processing inside the same query
engine. We start with a modern column-store architecture, realized in the Mon-
etDB system, and we design our new system based on this kernel. Our ultimate
goal is to fully exploit the generic storage and execution engine of the underly-
ing DBMS as well as its optimizer stack. With a careful design, we can directly
reuse all sophisticated algorithms and techniques of traditional DBMSs. A prime
benefit is that without having to reinvent solutions and algorithms for problems
and cases with a rich database literature we can support complex queries and
scalable query processing in a streaming environment.

The main idea is that when stream tuples arrive into the system, they are
immediately stored in (appended to) a new kind of tables, called baskets. By
collecting tuples into baskets, we can evaluate the continuous queries over the
baskets as if they were normal one-time queries. Thus, we can reuse many algo-
rithms and optimizations designed for a modern DBMS. Once a tuple has been
seen by all relevant queries/operators, it is dropped from its basket. The above
description is naturally oversimplified as this direction allows the exploration
of quite flexible strategies. For example, alternative directions include feeding
the same tuple into multiple baskets where multiple queries are waiting, split

⇤The material in this chapter has been the basis for the EDBT09 paper “Exploiting the
Power of Relational Databases for E�cient Stream Processing” (Liarou et al., 2009).
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query plans into multiple parts and sharing baskets between similar operators
(or groups of operators) of di↵erent queries allowing reuse of results and so on.
The query processing scheme of DataCell follows the Petri-net model (Peterson,
1977), i.e., each component/process/sub query plan is triggered only if it has
input to process while its output is the input for other processes.

3.1.1 Challenges and Contributions

Some questions that immediately arise, when we start thinking of and studying
the DataCell approach, are the following:

• How does DataCell guarantee responsiveness?

• How e�cient continuous query processing can DataCell provide?

• What is the optimal basket size?

• When do the queries see an incoming tuple?

• Can we handle queries with di↵erent priorities?

• Can we support query grouping?

• Is it feasible for all kind of stream applications (e.g., regarding time con-
straints)?

The above questions are just a glimpse of what one may consider. This
chapter does not claim to provide an answer to all these questions, neither
does it claim to have designed the perfect solution. Our contribution is the
awareness that this research direction is feasible and that it can bring significant
advantages. We carefully carve the research space and discuss the opportunities
and the challenges that come with this approach.

This chapter presents a complete architecture of DataCell in the context of
the currently emerging column-stores. We discuss our design and implementa-
tion on top of the open-source column-oriented DBMS, MonetDB. DataCell is
realized as an extension to the MonetDB/SQL infrastructure and supports the
standard SQL’03 allowing stream applications to support sophisticated query
semantics.

Our prototype implementation demonstrates that a full-fledged database
engine can support stream processing completely and e�ciently. The validity of
our approach is illustrated using concepts and challenges from the pure DSMS
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arena. A detailed experimental analysis using both micro-benchmarks and the
standard Linear Road benchmark demonstrates the feasibility and the e�ciency
of the approach.

3.1.2 Outline

The remainder of this chapter is organized as follows. In Section 3.2, we present
a detailed introduction of the DataCell architecture at large. Section 3.3 dis-
cusses the query processing model and pinpoints on the wide open research
possibilities. In Section 3.5 we provide an experimental analysis of the proposed
DataCell architecture, including micro-benchmarks and using the Linear Road
benchmark. Finally, Section 4.4 concludes the chapter.

3.2 The DataCell Architecture

In this section, we discuss the DataCell prototype architecture, which is based
on top of MonetDB, positioned between the SQL-to-MAL compiler and the
MonetDB kernel. In particular, the SQL runtime has been extended to manage
the stream input using the columns provided by the kernel, while a scheduler
controls activation of the continuous queries. The SQL compiler is extended
with a few orthogonal language constructs to recognize and process continuous
queries. We discuss the language extension in Chapter 4.

We step by step build up the architecture and the possible research direc-
tions. DataCell consists of the following components: receptors, emitters, baskets
and factories. The novelty is the introduction of baskets and factories in the
relational engine paradigm. Baskets and factories can, for simplicity, initially
be thought as tables and continuous queries, respectively.

There is a large research landscape on how baskets and factories can interact
within the DataCell kernel to provide e�cient stream processing. In the rest of
this section, we describe in detail the various components and their basic way
of interaction. More advanced interaction models are discussed in Section 3.3.2.

3.2.1 Receptors and Emitters

The periphery of a stream engine is formed by adapters, i.e., software compo-
nents to interact with devices, e.g., RSS feeds and SOAP web-services. The
communication protocols range from simple messages to complex XML docu-
ments transported using either UDP or TCP/IP. The adapters for the DataCell
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Figure 3.1: The DataCell model

consist of receptors and emitters.
A receptor is a separate thread that continuously picks up incoming events

from a communication channel. It validates their structure and forwards their
content to the DataCell kernel for processing. There can be multiple receptors,
each one listening to a di↵erent communication channel/stream.

Likewise, an emitter is a separate thread that picks up events prepared
by the DataCell kernel and delivers them to interested clients, i.e., those that
have subscribed to a query result. The emitter automatically removes from the
kernel the delivering data. There can be multiple emitters each one responsible
for delivering a di↵erent result to one or multiple clients.

Both receptors and emitters are connected to a basket, the data structure
where they write to and read from the streaming data, as we describe in the
next subsection. Figure 3.1 demonstrates a simple interaction model between
the DataCell components; a receptor and an emitter can be seen at the edges
of the system listening to streams and delivering results, respectively.

3.2.2 Baskets

The basket is the key data structure of DataCell. Its role is to hold a portion of
a data stream, represented as a temporary main-memory table. Every incoming
tuple, received by a receptor, is immediately placed in (appended to) at least
one basket and waits to be processed.

Once data is collected into baskets, we can evaluate the relevant continuous
queries on top of these baskets. In this way, instead of feeding each individual
tuple to the relevant query, we evaluate each query over its input basket(/s)
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in one go (e.g., consuming all accumulated tuples at once). This processing
model resembles the typical DBMS scenario and thus we can exploit existing
algorithms and functionality of advanced DBMSs. Later in this section, we
discuss in more detail the interaction between queries and baskets.

The commonalities between baskets and relational tables allow us to avoid
a complete system redesign from scratch. Therefore, the syntax and semantics
of baskets is aligned with the table definition in SQL’03 as much as possible.
A prime di↵erence is the retention period of their content and the transaction
semantics. A tuple is removed from a basket when it “has been consumed” by
all relevant continuous queries and it is not needed anymore. In this way, the
baskets initiate the data flow in the stream engine. More advanced and flexible
models are discussed in the next section.

The main di↵erences between baskets and relational tables are as follows.

• Basket Integrity

The integrity enforcement for a basket is di↵erent from a relational table.
Events that violate the constraints are silently dropped. They are not
distinguishable from those that have never arrived in the first place. The
integrity constraint acts as a silent filter.

• Basket ACID

The baskets are like temporary global tables, their content does not survive
a crash or session boundary. However, concurrent access to their content
is regulated using a locking scheme and the scheduler.

• Basket Control

The DataCell provides control over the streams through the baskets. A
stream becomes blocked when the relevant basket is marked as disabled.
The state can be changed to enabled once the flow is needed again.
Selective (dis)enabling of baskets can be used to debug a complex stream
application.

• Basket Tuple Expiration

In a stream application scenario, tuple expiration happens on a more fre-
quent basis than in a typical OLAP scenario. In DataCell, we handle data
stream expiration immediately and in a di↵erent way than we handle up-
dates and deletions in the underlying columnar architecture of MonetDB.
In MonetDB, for each column we maintain three di↵erent arrays to rep-
resent the original persistent tuples, the updated and inserted tuples, and
the deleted tuples. Once a (one-time) query is submitted, we first merge
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the tuples from these three arrays to get only the valid tuple values and
then continue with the actual query evaluation. When the two secondary
arrays grow enough, then the merging happens automatically. Even if
the data deletion in an OLAP scenario looks similar to the data stream
expiration in a stream application scenario, it is ine�cient to follow this
processing model since the accumulated number of expired tuples is ex-
pected to grow rapidly. Instead, in DataCell we choose to do complete
and instant data stream deletion, without maintaining the expired data
aside. This change implies a change to the generated query plans as well.
We now have only a single array instead of three (because we do deletions
in place) and consequently inside the plans there is no need to do any
merging of these arrays.

An important opportunity, with baskets as the central concept, is that we
purposely step away from the de-facto approach to process events in arrival order
only. Unlike other systems there is no a priori order; a basket is simply a (multi-
)set of events received from a receptor. We consider arrival order a semantic
issue, which may be easy to implement on streams directly, but also raises
problems, e.g., with out-of-sequence arrivals (Abadi et al., 2005), regulation
of concurrent writes on the same stream, etc. It unnecessarily complicates
applications that do not depend on arrival order. On the other hand, baskets
in DataCell provide maximum flexibility to perform both in-order and out-of-
order processing. They allow the system to select and process arbitrary groups
of tuples at a time, without necessarily following their arrival order.

Realizing the DataCell approach on top of a column-oriented architecture,
comes with all the benefits of the respective design. e.g., depending on the
workload there may be less I/O and memory bandwidth requirements for a
column-store. For a stream S of k attributes, we create a basket B that consists
of k BATs (columns). Each BAT stores the respective attribute of stream S as
(key,attr) pairs. In this way, the basket representation in DataCell is like the
relational table representation in MonetDB (see Section 2.7). For each basket
B there exists an extra column, the timestamp column, that reflects the arrival
time of each tuple in the system.

In this way, we exploit all column-store benefits during query processing,
i.e., a query needs to read and process only the attributes required and not
all attributes of a basket. For example, assume a stream S that creates tuples
with k di↵erent attributes. In a row-oriented system, each query interested in
any of the attributes in S has to read the whole S tuples, i.e., all k attributes.
In DataCell, we exploit the column-oriented structure of the underlying model,
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and allow each query to bind only the attributes (of baskets) it is interested
in, avoiding to access extra data and reducing their footprint. Furthermore,
queries interested in di↵erent attributes of the same stream can be processed
completely independently. We encountered the above scenarios for numerous
queries in the Linear Road benchmark (Arasu et al., 2004) where each stream
contains multiple attributes while not all queries need to access all of them.

3.2.3 Factories

In this section, we introduce the notion of factories. The factory is a convenient
construct to model continuous queries. In DataCell, a factory contains all or
just a subset of the operators of the query plan for a given continuous query.
A factory may also contain (parts of) query plans from more than one query.
For simplicity assume for now that each factory contains the complete plan of
a single query.

Each factory has at least one input and one output basket. It continuously
reads data from the input baskets, processes it and creates results which places in
its output baskets. Each time a tuple t is being consumed from an input basket
B (i.e., it is processed and it is not needed anymore), the factory removes t from
B to avoid reading it again. We revisit these choices later on, when we discuss
more complex processing schemes in Section 3.3.

A factory can also access persistent tables, deriving data from there and/or
modifying their content. This feature is provided in the most natural way, since
our base architecture is a DBMS. In this way, we can support query scenarios
that require analysis of streaming and persistent data.

Having introduced the basic DataCell components, we can now consider
how they interact at a higher level using Figure 3.1 as an example. A receptor
captures incoming tuples and places them in basket B1. Then, a factory that
contains the full query plan of continuous query Q processes the streaming data
in B1 and the persistent data in table T . Subsequently, it places all qualifying
tuples in the outer basket B2 where the emitter can finally collect the results
and deliver them to the client.

In general, at any point in time, multiple receptors wait for incoming tuples
and place them into the disjoint baskets. A scheduler handles multiple factories
that read these input baskets and place results into multiple output baskets
where multiple emitters feed the interested clients with results. It is a multi-
threaded architecture, where every single component (i.e., receptors, emitters
and the factory scheduler) is an independent thread. Figure 3.2 illustrates an
overview of the DataCell architecture, with all the participant components de-
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Figure 3.2: MonetDB/DataCell Architecture

scribed above and the extensions of the underlying MonetDB system. DataCell
components are positioned between the MonetDB SQL compiler/optimizer and
the DBMS kernel. The SQL compiler is extended with a few orthogonal lan-
guage constructs to recognize and process continuous queries (see Chapter 4).
The query plan as generated by the SQL optimizer is rewritten to a continuous
query plan and handed over to the DataCell scheduler. In turn, the scheduler
handles the execution of the plans.

Let us now describe the factories concept in more detail. A factory is a
function containing a set of MAL operators corresponding to the query plan of
a given continuous query. A factory is specified as an ordinary function; the
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Algorithm 1 The factory for a continuous query that selects all values of
attribute X.a in range v1-v2.

1: input = basket.bind(X.a)
2: output = basket.bind(Y.a)
3: while true do
4: basket.lock(input)
5: basket.lock(output)

6: result = algebra.select(input,v1,v2)

7: basket.empty(input)
8: basket.append(output,result)

9: basket.unlock(input)
10: basket.unlock(output)
11: suspend()

di↵erence is that its execution state is saved between calls and that it permits
re-entry other than by the first statement. Submitted queries are transformed
to factories and the DataCell scheduler is responsible to trigger their execution
(to be discussed below).

The first time that the factory is called, a stack frame is created in the
local system to handle subsequent requests and synchronizes access. Its status
is being kept around and the next time it is called it continues from the point
where it stopped before. In Algorithm 1, we give an example of the factory
DataCell constructs for the following simple range single stream continuous
query, expressed in SQL-like syntax.

(q1) INSERT INTO Y (a)
SELECT X.a
FROM X
WHERE X.a BETWEEN v1 and v2;

In query q1, we filter out all these tuples from stream X that their attribute
value X.a is between the values (v1, v2). The query feeds the qualifying tuples
to stream Y .

The factory in Algorithm 1 contains the full query plan (in this case just a
single operator in line 6) where the original MonetDB operators are being used.
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In particular, we use the select operator that belongs in the algebra module.
The modules represent a logical grouping and they provide a name space to
di↵erentiate similar operations.

Essentially the factory contains an infinite loop to continuously process in-
coming data. Each time it is being called by the scheduler, the code within the
loop executes the query plan. Then, it is put to sleep until it receives a wakeup
call again from the scheduler; it continues at the point where it went to sleep.

Careful management of the baskets ensures that one factory, receptor or
emitter at a time updates a given basket. In this way, as seen in Algorithm 1,
the loop of the factory begins by acquiring locks on the relevant input and
output baskets (line 4 and 5 respectively). The locks are released only at the
end of the loop just before the factory is suspended. Both input and output
baskets need to be locked exclusively as they are both updated, i.e., (a) the
factory removes all tuples seen so far from the input baskets so that it does not
process them again in the future to avoid duplicate notifications and (b) it adds
result tuples to the output baskets. In the case of (sliding) window queries, only
the tuples outside the current window are removed from the basket. In Chapter
5, we study and analyze in detail how to bring incremental stream processing
for sliding window queries in the context of DataCell.

3.3 Query Processing

The previous section presented the basic components of the DataCell architec-
ture. In this section, we focus on the interaction of these components in order
to achieve e�cient and scalable continuous query processing. In addition, we
discuss further alternative directions that open the road for challenging research
opportunities.

3.3.1 The DataCell Processing Model

The DataCell architecture uses the abstraction of the Petri-net model (Peterson,
1977) to facilitate continuous query processing. A Petri-net is a mathematical
representation of discrete distributed systems. It uses a directed bipartite graph
of places and transitions with annotations to graphically represent the structure
of a distributed system. Places may contain (a) tokens to represent information
and (b) transitions to model computational behavior. Edges from places to
transitions model input relationships and, conversely, edges from transitions to
places denote output relationships.



3.3. QUERY PROCESSING 67

Select * 
from X
Where X.a>10;

Select * 
from Y
Where Y.a<100;

Select * 
from X,Y
Where X.b>Y.b;
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Figure 3.3: Petri-net Example

A transition fires if there are tokens in all its input places. Once fired, the
transition consumes the tokens from its input places, performs some processing
task, and places result tokens in its output places. This operation is atomic,
i.e., it is performed in one non-interruptible step. The firing order of transitions
is explicitly left undefined.

An advantage of the Petri-net model is that it provides a clean definition
of the computational state. Furthermore, its hierarchical nature allows us to
display and analyze large and small models at di↵erent scales and levels of
detail.

In Figure 3.3, we show the mapping between the Petri-net and the Data-
Cell components. Baskets are equivalent to Petri-net token place-holders while
receptors, emitters and factories represent Petri-net transitions. Following the
Petri-net model, each transition has at least one input and at least one output.

Each receptor has as input the stream it listens to and as output one or more
baskets where it places incoming tuples. The user that sets up an application
scenario, needs to specify the source of the data stream (e.g., which port the
receptor listens to) and the target, where the receptor continuously appends the
incoming data.

Each factory has as input one or more baskets from where it reads its input
data. These baskets may be the output of one or more receptors or the output
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of one or more di↵erent factories or mixed. The output of a factory is again one
or more baskets where the factory places its result tuples.

Each emitter has as input one or more baskets that represent output baskets
of one or more factories. The output of the emitter is the delivery of the result
tuples to the clients representing the final state of the query processing chain.

The firing condition that triggers a transition (receptor, emitter or factory)
to execute is the existence of input, e.g., at least one tuple exists in B, where
B is the input basket of the transition. After an input tuple has been seen by
all relevant transitions, it is subsequently dropped from the basket so that it is
not processed again.

The DataCell kernel contains a scheduler to organize the execution of the
various transitions. The scheduler runs an infinite loop and at every iteration
it checks which of the existing transitions can be processed by analyzing their
inputs. As a first approach the DataCell scheduler continuously re-evaluates
the input of all transitions, implementing the round-robin algorithm; in the
next section we study some alternative customized processing strategies (see
Section 3.3.2).

In general, in order to accommodate more flexible processing schemes, the
system may explicitly require a basket to have a minimum of n tuples before
the relevant factory may run. For example, this is useful to enhance and control
batch processing of tuples as well as in the case of certain window queries, e.g.,
a window query that calculates an average over a full window of tuples needs
to run only once each window is complete. This may be achieved at the level
of the scheduler for tuple-based window queries or at the level of the factory in
the case of time-based queries, i.e., by plugging in auxiliary baskets that check
the input for the window properties.

When a transition has multiple inputs, then all inputs must have tuples for
the transition to run. In certain cases, to guarantee correctness and avoid un-
necessary processing costs, auxiliary input/output baskets are used to regulate
when a transition runs. Assume for example a sliding window join query q, with
two input baskets B1 and B2 that reflect the join attributes. Every time q runs,
we need to only partially delete the inputs as some of the tuples will still be
valid for the next window. At the same time, we do not want to run the query
again unless the window has progressed, i.e., new tuples have arrived on either
input. Adding a new auxiliary input basket B3 solves the problem. The new
basket is filled with a single tuple marked true every time at least one new tuple
is added to either B1 or B2 and is fully emptied every time q runs.
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3.3.2 Processing Strategies

Up to now, for ease of presentation, we have described the DataCell in a very
generic way in terms of how the various components interact. The way factories
and baskets interact within the DataCell kernel defines the query processing
scheme. By choosing di↵erent ways of interaction, we can make the query pro-
cessing procedure more e�cient and more flexible. In this section, we discuss our
first approach to validate the feasibility of the DataCell vision and subsequently
we point to further challenging directions.

Separate Baskets

Our first strategy, called separate baskets, provides the maximum independence
to each query. Each continuous query is fully encapsulated within a single
factory. Furthermore, each factory F

i

has its own input baskets that only F

i

accesses to read and update, without the need of concurrency control. The
latter has the following consequences. In the case that k factories, where k > 1,
are interested in the same data, then this data has to be placed in more than
one baskets upon arrival into the system, i.e., the data has to be replicated
k times, once for each relevant factory. This is done by automatically inject
a copy factory between the submitted factories and the original data source.
The benefit is that the factories can run completely independently, avoiding
any conflict of interest situation, without the need to carefully schedule their
accesses on the baskets. An example is given in Figure 3.4(a).

By exploiting the flexibility of building on top of a column-store, we can
minimize the overhead of the initial replication needed since the system handles
and stores the data one column/attribute at a time. For example, depending
on the workload there may be less I/O and memory bandwidth requirements.
In this way, if a factory is interested in two attributes a, b of stream S, then we
need to copy in its baskets only the columns a and b and not the full tuples of
S containing all attributes of the stream.

Shared Baskets

The first strategy, described above, is the baseline to study the properties and
the potential of DataCell. Our second strategy, called shared baskets, makes
a first step towards exploiting query similarities. The motivation is to avoid
the initial copying of the first strategy by sharing baskets between factories.
Each attribute from the stream is placed in a single basket B and all factories
interested in this attribute have B as an input basket.
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Naturally, sharing baskets minimizes the overhead of replicating the stream
in many baskets. In order to guarantee correct and complete results, the next
step is to regulate the way factories access their input baskets such that a tuple
remains in its basket until all relevant factories have seen it. Thus, the shared
basket strategy steps away from the decision of forcing each single factory to
remove the tuples it reads from an input basket after execution based on the
semantics of the respective query.

To achieve the above goal, for every basket B which shared as input between
a group of k factories, we add two new factories, the locker and the unlocker. An
example is shown in Figure 3.4(b). The locker factory, Lock, is placed between B

and the originally attached factories (i.e., submitted continuous queries). Once
B contains a number of new tuples, Lock runs. Its task is to simply lock B.
The output of Lock is k baskets, one for each waiting factory, i.e., L

F1, LF2,
. . . , L

FK

. In each one of these outputs, Lock writes a single tuple containing
a bit attribute marked “true”. Then, all factories can read and process B but
without removing any tuples. Every factory F

i

has an extra output basket,
apart from the expected result basket, where it writes a single bit attribute to
mark that its execution over the locked version of the input basket B is over.
In Figure 3.4(b) this is shown as U

Fi

. These output baskets are inputs to the
unlocker factory Unlock. The task of Unlock is that once all factories have
seen the content of the input basket i.e., once all output baskets U

F1, UF2, . . . ,
U

FK

are marked, it removes from B all tuples covered by the semantics of the
factories, and subsequently it unlocks B so that the receptor can insert new
tuples.

This strategy entails that if N factories share one basket B, then DataCell
needs to wait until all N factories finish reading B. Only then, we can apply
deletes and move on to the next data batch. These observations make the
shared baskets strategy more appropriate for “delete all” queries, or sliding
window queries with the same sliding step.

Using this simple scheme, we can use shared baskets and exploit common
query interests. It nicely shows that the DataCell model is generic and flexi-
ble. Furthermore opportunities may come by exploiting recent techniques and
ideas for sharing retrieval and execution costs of concurrent queries in databases
(Harizopoulos et al., 2005).

Further ideas for sharing data streams. Another way to achieve data
stream sharing among co-existing continuous queries, is to follow a di↵erential
approach. The idea is that apart from the original basket that constitutes the
common input source for multiple factories, each factory maintains a separate
set of arrays, i.e., one array for each basket column. In each auxiliary basket
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the factory marks the tuples it has already consumed. Thus, every time the
scheduler triggers a factory, it should first merge the two di↵erent versions of
its input baskets. More precisely, each factory should merge the original basket
which is the same for every interested factory and the expiration basket which is
unique for every factory. In this way, a factory always gets all valid tuples and
then it can continue with the rest of the query evaluation steps. In this scheme,
a garbage collector should have access to both the input basket and to all the
factory baskets that maintain the expired tuples of the co-existing continuous
queries. This is necessary such that it can periodically clean the tuples that are
not useful any more by any query, lightening the total storage space.

This direction is not further explored in this thesis. We discuss it here as a
valid alternative way to explore data stream sharing by slightly modifying the
underlying MonetDB processing scheme. Our intuition is that this scheme would
be appropriate for application scenarios with relatively low update rates of data
streams and continuous queries with high commonality on tuple expiration (i.e.,
rate and value wise).

Partial Deletes

The shared baskets strategy, described above, removes the tuples from a shared
input basket only once all relevant factories have seen it. The next strategy
is motivated by the fact that not all queries on the same input are interested
in the same part of this input. For example, two queries q1 and q2 might be
interested in disjoint ranges of the same attribute. Assume q1 runs first. Given
that the queries require disjoint ranges, all tuples that qualified for q1 are for
sure not needed for q2. This knowledge brings the following opportunity; q1 can
remove from B all the tuples that qualified its basket predicate and only then
allow q2 to read B. The e↵ect is that q2 has to process less tuples by avoiding
seeing tuples that are already known not to qualify for q2. All we need is an
extra basket between q1 and q2 so that q2 runs only after q1. Figure 3.4(c)
shows an example where three queries, encapsulated in F1, F2 and F3 factories
respectively, create such a chain. Each factory proceeds to the query execution,
appending tuples to its attached output basket, and in parallel leaves behind
the left-overs of its input, e.g., B0 ✓ B.

This strategy opens the road for even more advanced ways of exploiting query
commonalities. For example, the idea to incrementally build indices based on the
particular needs of each continuous query follows the philosophy of the partial
deletes mechanism we described above. There, we could choose when it is worth
to build an index on streaming data, e.g., as in (Idreos, 2010) where indices are
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build during the execution stage, which will also be valuable for the queries we
are going to execute afterwards. We have not covered these techniques in this
thesis, but it is an interesting future research direction.

3.3.3 Research Directions

In the previous subsection we introduced a number of di↵erent processing strate-
gies and discussed how they do fit in the DataCell model. The goal of this chap-
ter is not to propose the ultimate processing scheme. We introduce the DataCell
model and argue that it is a promising direction that opens the road for a wide
area of research directions under this paradigm. There is a plethora of possibil-
ities one may consider regarding the processing strategies in data streams, e.g.,
(Sharaf et al., 2008).

The most challenging directions in our context come from the choice to split
the query plan of a single query into multiple factories. The motivation to
do this may come from multiple di↵erent reasons. For example, consider the
shared baskets strategy. Each factory in a group of factories sharing a basket,
will conceptually release the basket only after it has finished its full query plan.
Assume two query plans, a simple (lightweight) query q1 and a quite complex
(heavy) query q2 that needs a considerable higher amount of processing time
compared to q1. With the shared baskets strategy we force q1 to wait for q2

to finish before we can allow the receptor to place more tuples in the shared
basket so that q1 can run again. A simple solution is to split a query plan
into multiple parts so that the part that needs to read the basket becomes a
separate factory. This way, the basket can be released once a factory has loaded
its tuples, e↵ectively eliminating the need for a fast query to wait for a slow
one.

Another natural direction that comes to mind once we decide to split the
query plans into multiple factories is the possibility to share not only baskets, but
also execution cost. For example, queries requiring similar ranges in selection
operators can be supported by shared factories that give output to more than
one query’s factories. Auxiliary factories can be plugged in to cover overlapping
requirements.
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3.4 Optimizer Pipeline and DataCell Implemen-
tation

One essential part of every data management system is the optimization phase.
The query optimizer is responsible for finding the most appropriate query plan,
i.e., the proper way to execute a query. Then the execution engine is responsible
for actually evaluating a query over the proper data.

In this section, we discuss in more detail the optimization steps in our Mon-
etDB experimentation platform and we pinpoint on the design changes needed
for DataCell. DataCell receives a one-time query plan which is produced by the
MonetDB optimizer and it transforms it to a continuous query plan. It achieves
this by introducing new optimization rules and transformations. The transfor-
mations required for the first reevaluation-based design of DataCell are quite
simple. More advanced transformations are required to support incremental
and window query processing. Those are discussed in Chapter 5.

The code produced by MonetDB/SQL is passed and massaged by a series
of optimization steps, denoted as an optimizer pipeline, as we discussed in Sec-
tion 2.7. Each pipeline consists of a sequence of MAL function calls that inspect
and transform the plan. The final result of the optimizer steps is what it is sub-
mitted to the execution engine.

The basic DataCell optimizer pipeline is the following:

datacell_pipe=inline,remap,evaluate,costModel,coercions,emptySet,
aliases,deadcode,constants,commonTerms,datacell,emptySet,aliases,
deadcode,reduce,garbageCollector,deadcode,history,multiplex

The interested reader can refer to MonetDB documentation (MonetDB,
2012) for further analysis of each individual optimization rule. For example,
the costModel optimizer inspects the SQL catalog for size information, the
deadcode removes all code not leading to used results, the reduce optimizer
reduces the stack space for faster calls, and the emptySet removes empty set
expressions. Note that most of these rules in the above pipeline are optimiza-
tions we also use in the traditional OLAP scenario where we handle one-time
queries.

In MonetDB, the optimizer pipelines contain dependencies. For example,
it does not make much sense to call the deadcode optimizer too early in the
pipeline, although it is not an error.

The datacell optimization set of rules is exclusively created to cover the
needs of the continuous query scenario. Its main role is to transform a one-time
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query plan to a continuous query plan. The main actions it takes are as follows.

• It wraps the MAL plan in a factory (see Section 3.2.3 and Algorithm 1).

• It adds in the proper place of the MAL plan the infinite loop that guaran-
tees continuous query processing. Instructions that should be evaluated
only once, such as basket binds, remain outside the loop.

• It plugs in the appropriate data cleaning instructions for proper tuple
expiration.

• It introduces the locking and unlocking scheme for the source and target
baskets of the query.

• It discards the unnecessary (secondary) arrays that by default represent
the deletions and updates of each column in MonetDB. In addition, it
cleans the corresponding commands that the discarded arrays participate
(explicitly and implicitly).

Any optimizer in MonetDB, once it is called needs to traverse the MAL plan
and collect information to local data structures that it uses to modify the input
plan. In some cases, some information is passed from one optimizer to another
for further analysis.

At this level, the datacell optimizer is only responsible to implant stream-
ing functionalities in a normal query plan. In Chapter 5, we show how we
extended the optimization phase with new set of rules in order to support in-
cremental stream processing for sliding window queries.

3.5 Experimental Analysis

In this section, we report on experiments using our DataCell implementation on
top of MonetDB v5.6. All experiments are on a 2.4GHz Intel Core2 Quad CPU
equipped with 8GB RAM. The operating system is Fedora 8 (Linux 2.6.24). Our
analysis consists of two parts, (a) an evaluation of the individual parts of the
DataCell using micro-benchmarks to assess specific costs, and (b) an evaluation
of the system at large using the complete Linear Road benchmark (Arasu et al.,
2004).



76 CHAPTER 3. DATACELL ARCHITECTURE

3.5.1 Micro-benchmarks

A stream-based application potentially involves a large number of continuous
queries. To study the basic DataCell performance, we first focus on a simple
topology, called Query chain, to simulate multi-query processing of continuous
queries inside the DataCell. An example is given in Figure 3.5. It reflects a
situation where the most general query is evaluated first against the incoming
tuples. Then, it passes the qualifying tuples to the next query in the pipeline,
which is less general and so on.

Metrics

Our metrics are the following. We measure the average latency per tuple, i.e.,
the time needed for a tuple to pass through all the stages of the stream network.
Thus, the latency L(t) of a tuple t is defined as L(t) = D(t)�C(t), where C(t)
is the time on which the sensor created t, while D(t) is the time on which the
client received t.

In addition, we measure the elapsed time per batch of tuples. For a batch b

of k tuples this metric is defined as E(b) = D(t
k

) � C(t1) where t1 is the first
tuple created for b and t

k

is the last tuple of b delivered to the client.
Finally, we measure the throughput of the system which is defined as the

number of tuples processed by the system divided by the total time required.

Interprocess Communication Overhead

Targeting real-world application, it is not su�cient to focus only on the per-
formance within the kernel of a stream engine. Communication costs between
devices controlling the environment, e.g., sensors, clients and the kernel have
a significant impact on the e↵ectiveness and performance. For this reason, we
experiment with a complete pipeline that includes the cost of the data shipping
from and to the kernel.

We implemented two independent tools, the sensor and the actuator. The
sensor module continuously creates new tuples, while the actuator module sim-
ulates a user terminal or device that posed one or more continuous queries and
is waiting for answers. The sensor and the actuator connect to the DataCell
through a TCP/IP connection. They run as separate processes on a single
machine.

In the following experiment, we measure the elapsed time and the throughput
while varying the number of queries. The sensor creates 105 random two-column
tuples. For each tuple t, the first column contains the timestamp that this tuple



3.5. EXPERIMENTAL ANALYSIS 77

E1

R1 C1 E1

R1 C1

R1 C1

Q1 E1C2

 CkQkQ1

Figure 3.5: The Query Chain topology

was created by the sensor, while the second one contains a random integer value.
We use simple select * queries. Thus, within the kernel every query passes all
tuples to the next one which reflects the worst case scenario regarding the data
volume flowing through the system.

Given that we have separate sensor and actuator processes, the time metrics
to be presented include (a) the communication cost for a tuple to be delivered
from the sensor to the DataCell, (b) the processing time inside the engine and (c)
the communication cost for the tuple to be sent from DataCell to the actuator.
To assess the pure communication overhead, we also run the experiments by
removing the DataCell kernel from the network. This leaves only the sensor
sending tuples directly to the actuator.

Figure 3.6(a) depicts the elapsed time. It increases as we add more queries
in the system and grows up to 200 milliseconds for the case of 64 queries. The
flat curve of the sensor to actuator experiment demonstrates that a significant
portion of this elapsed time is due to the communication overhead. The less
work the kernel has to do, the higher the price of the communication overhead
is, relative to the total cost.

In addition, Figure 3.6(b) shows. that the maximum throughput we achieve
simply by passing tuples from the sensor to the actuator is around 2.2 ⇤ 104 tu-
ples/sec. Naturally, with the DataCell kernel included in the loop the through-
put significantly decreases. Again the larger the number of queries in the system,
the lower the throughput becomes.

Pure Kernel Activity

At first sight the performance figures discussed above do not seem in line with
common belief. Unfortunately, the literature on performance evaluation of
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stream engines does not yet provide many points of reference. GigaScope (Cra-
nor et al., 2003) claims a peak performance up to a million events per second
by pushing down selection conditions the Network Interface Controller. On
the contrary, early presentations on Aurora report on handling around 160K
msg/sec. Comparing Aurora against a commercial DBMS, systemX, the sys-
tems show the capability to handle between 100 (systemX) and 486 (Aurora)
tuples/second (Arasu et al., 2004). Two solutions for systemX are given, one
based on triggers and stored procedures, and another one based on polling.

Most research papers in the literature for data stream system evaluation ig-
nore the communication overhead demonstrated above. The message through-
put is largely determined by the network protocol, i.e., how quickly can we get
events into the stream engine. To measure the performance of the pure DataCell
kernel without taking into account any communication overheads, we use the
query chain topology. Our experiments show that each factory can easily han-
dle 7 ⇤ 106 events per second. These numbers are in-line with the high-volume
event handling reported by others in similar experiments, i.e., without taking
into account communication costs. The interesting observation is that there is
a slack time due to this overhead and the system can exploit this time in many
ways, e.g., creating various indices, collecting statistics, etc.

Batch Processing

Here, we demonstrate the e↵ect of batch processing within the DataCell engine
using the separate baskets architecture. We set up the experiment as follows.
105 incoming tuples are randomly generated with a uniform distribution. Each
tuple contains an attribute value randomly populated in [0,100] and a timestamp
that reflects its creation time. All queries are single stream, continuous queries
of the following form.

SELECT S.a
FROM S
WHERE v1 < S.a < v2

All queries select a random range with 10% selectivity. Figure 3.7(a) depicts
the average latency per tuple for various di↵erent numbers of installed queries
and while varying the batch size (T ) used in query processing. The case of
T = 1 demonstrates the impact of the traditional processing model of handling
one tuple at a time. We clearly see that the latency significantly decreases as
we increase the batch size materializing a benefit of roughly three orders of
magnitude. An important observation is that the benefits of batch processing
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increase with a higher rate up to a certain batch size and then the improvement
is much less. When the batch size becomes very big, performance starts to
degrade especially for the case of the maximum number of queries. This is due
to the delay time needed, i.e., the average time a tuple has to wait for more
tuples to arrive so that the desired batch size is reached. Only then the tuples
can be processed. However, there is a point that this delay time becomes so
big that overshadows the benefits of grouped processing, i.e., performance does
not improve anymore or even degrades. In our experiment this point appears
at T = 103. Optimally setting and adapting the batch size depending on the
queries and system status is an open research problem.

Alternative Strategies

Let us now study the various query processing strategies discussed in Section
3.3.2. The previous experiment used the basic separate baskets approach. Here,
we demonstrate the benefits of using alternative strategies, i.e., shared baskets
and partial deletes. The set-up is similar to the previous experiment but this
time the batch size is constant at T = 103.

Figure 3.7(b) presents the results for various di↵erent numbers of installed
queries. Naturally, the two alternative strategies significantly outperform the
basic separate baskets approach. The reason is that both these strategies avoid
the procedure of creating the extra baskets which requires to replicate the stream
data at multiple locations once for each query. The higher the number of queries
in the system, the bigger the benefit. Furthermore, the shared baskets approach
achieves much better performance, than partial deletes especially as the number
of queries increases. This time the reason is that the shared baskets approach
is a more lightweight one regarding basket management. With partial deletes,
every query needs to modify its input basket to remove tuples that the next
query does not need. Although the next query can execute much faster due to
analyzing less data, the overhead of continuously modifying and reorganizing
the baskets is significant to overshadow a large portion of this benefit. On the
other hand, the shared baskets approach does not need to modify the data at
all. Only once all queries are finished, then the appropriate tuples are removed
from the input baskets in one simple step.

3.5.2 The Linear Road Benchmark

In this section, we analyze the performance of our system using the Linear
Road benchmark (Arasu et al., 2004). This is the only well-known benchmark
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developed for testing stream engines. It is a very challenging and complicated
benchmark due to the complexity of the many requirements. It stresses the
system and tests various aspects of its functionality, e.g., window-based queries,
aggregations, various kinds of complex join queries; theta joins, self-joins, etc.
It also requires the ability to evaluate not only continuous queries on the stream
data, but also historical queries on past data. The system should be able to store
and later query intermediate results. Due to the complexity, only a handful of
implementations of the benchmark exist so far. Most of them are based on a
low level implementation in C which naturally represents a specialized solution
that not clearly reflects the generic potential of a system. In this chapter, we
implemented the benchmark in a generic way using purely the DataCell model
and SQL. We created numerous SQL queries that interact with each other via
result forwarding (details are given below).

The Benchmark

Let us now give a brief description of the benchmark. It simulates a tra�c
management scenario where multiple cars are moving on multiple lanes and on
multiple di↵erent parallel roads. In Linear City each expressway has four lanes
in east and west direction. In three middle lanes of each direction cars are trav-
eling, while the external lane is devoted to entrance and exit to the expressway.
Each expressway is 100 miles-long and consists of 100 equally divided segments
of 1 mile long each. Figure 3.8 illustrates an example segment, as it was origi-
nally presented by the authors of the Linear Road Benchmark. Every vehicle is
equipped with a sensor that emits its exact position every 30 seconds. The sys-
tem is responsible to monitor the position of each car. It collects and analyzes
the incoming position reports, to create statistics about tra�c conditions on
each segment, of each expressway, for every minute or to immediately detect an
accident when occurs. An accident is detected when two or more cars are in the
same position for 4 continuous timestamps. Based on these statistics it dynam-
ically determines the toll rates and charges each individual driver the relevant
amount. In addition, the system needs to continuously monitor historical data,
as it is accumulated, and report to each car the account balance and the daily
expenditure. Furthermore, the benchmark poses strict time deadlines regarding
the response times which must be up to X seconds, i.e., an answer must be
created at most X seconds after all relevant input tuples have been created. X

is 5 or 10 seconds depending on the query (details below).
The benchmark contains a tool that creates the data and verifies the results.

The data of a single run reflects three hours of tra�c, while there are multiple
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Figure 3.8: Expressway Segment in LRB (Arasu et al., 2004)

scale factors that increase the amount of data created for these three hours, e.g.,
for scale factor 0.5 the system needs to process 6 ⇤ 106 tuples, while for scale
factor 1 we need to process 1.2 ⇤ 107.

Implementation in the DataCell

Our implementation of the benchmark was done completely in SQL and by
exploiting the power of a modern DBMS. We translated the requirements of
the benchmark in the form of a quite complex group of numerous SQL queries.
The original queries can be found in the validator tool of the benchmark. We
modified the queries into DataCell continuous queries. In particular there are
38 queries, logically distinguished in 7 di↵erent collections (Q1-Q7). Figure 3.9
gives a high level view of the various collections and the number of queries within
each one. The interested reader could refer to the sources of the benchmark,
as they are provided by the authors (Linear Road Benchmark, 2012). There
are numerous complex queries, e.g., self-join queries, theta join queries, nested
queries, aggregation, sliding window queries, etc. Only four of the query collec-
tions are output queries, i.e., Q4, Q5, Q6 and Q7 which create the final results
requested by the benchmark. The rest process the data and create numerous
intermediate results that pass from one query to another until they reach one
of the output queries.

In order to verify the baseline of our approach and keep the implementation
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simple, given the complexity of the benchmark, as a first step each collection of
queries becomes a single factory. It takes its input from another query collection
and gives its output to the next collection. Within each query collection the
individual queries form a simple pipeline, while as seen in Figure 3.9, a query in
one collection might have multiple inputs from di↵erent collections. Regarding
the time deadlines, the output collections Q4, Q5 and Q7 have a 5 seconds goal
while Q6 has a 10 second goal.

To verify the feasibility of the DataCell approach, as a first step, we purely
exploited the functionality provided by the DBMS using operators provided by
the system to handle the various columns. These operators have been developed
for use in the pure DBMS arena. Early analysis showed that a number of new
simple operators can increase the performance up to 20-30%. This was mostly
in the cases of the operators used to remove tuples from a basket. Due to the
complexity of the benchmark, there are numerous cases where we do not need
to simply empty a basket. Instead we need to selectively remove tuples based
on numerous restrictions, e.g., window-based queries, multiple queries needing
the same data but with di↵erent restrictions, etc. To achieve the required func-
tionality, we often had to combine 3-4 operators which introduces a significant
delay by processing the same column over and over again. In most of the cases,
creating a new operator, that, for example, in one go removes a set of tuples
by shifting the remaining tuples in the positions of the deleted ones, gives a
significant boost in performance.

Evaluation

Let us now proceed with the performance results. Figure 3.11 shows the per-
formance during the whole duration of the benchmark (three hours) for scale
factor 1. Graph 3.11(a) shows the total number of tuples entered the system at
any given time while the rest of the graphs show the processing time needed for
each query collection. Each time a collection of queries runs, i.e., because there
was new input for its first query, then all its queries will run, one after the other,
if the proper intermediate results are created. One, some or even all its queries
may run in one go depending on the input. The graphs in Figure 3.11 depict the
response time for each query collection Q

i

, every time Q

i

was activated through
the three hours of the benchmark.

The first observation is that the response time is kept low for all queries.
Most of the collections need much less than one second with query collection 7
being the most resource consuming. It contains 18 complex queries with multiple
join and window restrictions. For most of the query collections, we observe that
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Figure 3.12: Data distribution during the benchmark

the cost is increased as more data arrives. This is due to a number of reasons.
First, data and intermediate results is accumulated over time creating bigger
inputs for the various queries. Most importantly, in many cases it is the content
of the incoming data that triggers more work. For example, the second query
collection (Figure 3.11(c)) is the one detecting the accidents. With the way
data is created by the benchmark (for scale factor 1), accidents occur with
a continuously increasing frequency after one hour. This is when we see the
queries in Figure 3.11(c) to increase their workload as to compute the various
accident situations for each car, in each lane etc. In turn, these queries create
bigger inputs for the queries in the next query collections and so on.

Furthermore, the benchmark is designed in such a way that more data enters
the system, the more the time goes by. This is demonstrated in Figure 3.12
where we show the number of tuples that enter the system every second. For
example, for scale factor 1, 15 to 20 tuples per second arrive at the beginning,
while towards the end of the three hours run we get up to 1700 tuples per second.
All categories scale nicely achieving to process the extra data as the benchmark
evolves. Even the most expensive query collection, Q7, manages to maintain
performance levels below 2 seconds which is well below the 5 seconds goal.
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Figure 3.13: Average response time for Q7

Furthermore, Figure 3.13 depicts the average response time for query col-
lection Q7 which is one of the output results of the benchmark. This metric is
common when evaluating the benchmark, e.g., (Jain et al., 2006) as this collec-
tion defines the performance of the system by containing the most heavyweight
queries, dominating the system resources (see Figure 3.11). The average re-
sponse time is defined as the average processing time needed for the queries in
this collection. It is measured every time 106 new tuples enter this collection
by calculating the average time needed to process these 106 tuples.

Figure 3.13 shows that the response time is continuously kept low, below 1.5
seconds, even towards the end of the three hours run when data arrives at a
much higher frequency. Going from scale factor 0.5 to 1, the performance scales
nicely considering the much higher volume of incoming data.

The results observed above are similar to what specialized stream systems
report, e.g., (Arasu et al., 2004). They indicate that the DataCell model can
achieve competitive performance with a very generic implementation of the
benchmark and with the most basic system architecture. It shows that a mod-
ern DBMS can be successfully turned into an e�cient stream engine. Future
research on optimization and alternative architectures is expected to bring even
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more performance, exploiting the power of relational databases but also the
stream properties to the maximum.

3.6 Summary

In this chapter, we introduced the basic DataCell architecture, a radically dif-
ferent approach in designing a stream engine. The system directly exploits
all existing database knowledge by building on top of a modern column-store
DBMS kernel. Incoming tuples are stored into baskets and then they are queried
and removed from there by multiple factories (queries/operators) waiting in the
system. Our design allows for numerous alternative ways of interaction between
the basic components, opening the road for interesting and challenging research
directions. This chapter presents the basic approaches and through a complete
implementation of the DataCell prototype, it shows that this is a very promis-
ing direction that together with the experience gained from the existing stream
literature, can lead to very interesting research opportunities.

The following chapter presents a semi-procedural query language proposed in
the context of DataCell, and in Chapter 5 we study the crucial pure stream pro-
cessing problem of incremental processing for window-based continuous queries.
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Chapter 4

Query Language⇤

4.1 Introduction

In the previous chapter we presented the basic DataCell architecture. We de-
fined the new concepts introduced in our underlying kernel in order to support
e�cient data stream processing. DataCell fundamentally changes the way that
data streams are handled and processed, trying to exploit many traditional
core database techniques and ideas. We implemented and ran the Linear Road
benchmark and a number of micro-benchmarks that show that our approach
to implant stream processing functionalities in the heart of a modern database
kernel is not only a realistic but also a promising direction that deserves further
study.

In this chapter, we focus on the DataCell language interface. We propose
a semi-procedural language as a small extension of SQL, that can be used to
access both streaming and database data at the same time. DataCell provides
an orthogonal extension to SQL’03, called basket expressions, which behave as
predicate windows over multiple streams and which can be bulk processed for
good resource utilization. The functionality o↵ered by basket expressions is
illustrated with numerous examples to model complex event processing appli-
cations.

⇤The material in this chapter has been the basis for the EDA-PS paper “A Query Language
for a Data Refinery Cell” (Kersten et al., 2007).
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4.1.1 Contributions

The main contributions and topics addressed in this chapter are as follows.

• Predicate windows. DataCell generalizes the (sliding) window approach,
predominant in DSMSs, to allow for arbitrary table expressions over streams.
It enables applications to selectively process the stream and prioritize
event processing based on application semantics.

• SQL compliance. The language extensions proposed are orthogonal to
existing SQL semantics. We do not resort to redefinition of the window

concept, nor do we a priory assume a sequence data type. Moreover, the
complete state of the system can at any time be inspected using SQL
queries.

The stream behavior in DataCell is obtained using a small and orthogonal
extension to the SQL language. As we discussed in the previous chapter, streams
are presented as ordinary temporary tables, called baskets which are the target
for (external) sources to deposit events. Baskets carry little overhead as it comes
to transaction management. Their content disappears when the system is shut
down.

Subsequently, SQL table expressions can be marked as basket expressions,
which extract portions of interest from stream baskets or ordinary tables. It cre-
ates a tuple flow between queries, independent of the implementation technique
of the underlying query execution engine.

The benefit of the two language concepts is a natural integration of streaming
semantics in a complete SQL framework. It does not require overloading the
definition of existing language concepts, nor a focus on a subset of SQL’92.
Moreover, its integration with a complete SQL software stack from the outset
leverage our development investments.

The validity of our approach is illustrated using concepts and challenges
from the “pure” DSMS arena where light-weight stream processing is a starting
point for system design. An exhaustive list of examples provides the foundation
for comparison against the DataCell approach.

4.1.2 Outline

The remainder of this chapter is organized as follows. In Section 4.2 we introduce
the SQL enrichment in more detail. Section 4.3 explores the scope of the solution
by modeling stream-based application concepts borrowed from dedicated stream
database systems. Finally, Section 4.4 concludes the chapter.
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4.2 DataCell Model

In this section we define the DataCell language components, i.e., baskets, re-
ceptors and emitters, basket expressions, and continuous queries, through its
language interface. All components are modeled with the SQL’03 language
(Eisenberg et al., 2004) with a novel extension, the basket expression, which
will also be described in this section. Together they capture and generalize the
essence of data stream applications.

4.2.1 Baskets

As we described in the previous chapter (see Section 3.2.2) the basket is the
key data structure of DataCell, that holds a portion of a stream. It is repre-
sented as a temporary main-memory table. Incoming events are just appended,
and tuples are removed from the basket when “consumed” by a query. The
commonalities between baskets and relational tables are much more important
to warrant a redesign from scratch. Therefore, their syntax and semantics are
aligned with the table definition in SQL’03.

Example 1. The basket definition below models an ordered sequence of events.
The id takes its value from a sequence generator upon insertion, a standard
feature in most relational systems nowadays. It denotes the event arrival order.
The default expression for the tag, ensures that the event is also timestamped
upon arrival. The payload value is received from an external source.

CREATE BASKET X(
tag timestamp default now(),
id serial,
payload integer

);

Important di↵erences between a basket and a relational table are their pro-
cessing state, their update semantics and their transaction behavior. The pro-
cessing state of a basket X is controlled with the statements enable X and
disable X. The default is to enable the basket to enqueue and dequeue tuples.
By disabling it, queries that attempt to update its content become blocked.
Selectively (dis)enabling baskets can be used to debug a complex stream appli-
cation.

A distinctive feature of a basket is its handling of integrity violations. Events
that violate the constraints are silently dropped. They are not distinguishable
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from those that have never arrived in the first place.
Furthermore, the events do not appear in the transaction log and updates

can not be “rolled-back”. Baskets are subject to a rigid concurrency scheme.
Access is strictly serialized between receiver/emitter and continuous queries. It
all leads to a light-weight database infrastructure.

The high-volume insertion rate and the short life of an event in the system
make the traditional transaction management a no-go area. With baskets as
the central concept we purposely step away from the de-facto semantics of pro-
cessing events in arrival order in most streaming systems. We consider arrival
order a semantic issue, which may be easy to implement on streams directly,
but also raises problems with out-of-sequence arrivals (Abadi et al., 2005) and
unnecessary complicates applications where the arrival order is not relevant.

4.2.2 Receptors and Emitters

As we have already defined in the previous chapter, the periphery of DataCell
consists of receptors and emitters. These separate processes connect DataCell
with the outside world. A receptor picks up streaming events from a commu-
nication channel and forwards them to the kernel for processing. Likewise, an
emitter picks up the events that constitute the answer of the continuous queries
and delivers them to clients who have subscribed to the query results.

Receptors and emitters are woven into the SQL language framework as a
variant of the SQL copy statement. The communication protocol is encoded
in the string literal which is interpreted internally. Currently, the supported
protocols are TCP-IP and UDP channels.
Example 2. The statements below collect events from the designated IP address
and deliver them to another. It is the smallest DataCell program to illustrate
streaming behavior.

COPY INTO X(payload)
FROM ’localhost:50032’;

COPY FROM X(tag,payload)
INTO ’localhost:50033’
delimiters ’,’,’\n’;

4.2.3 Basket Expressions

The basket expressions are the novel building blocks for DataCell queries. They
encompass the traditional select-from-where-group by SQL language frame-
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work. A basket expression is syntactically a table expression surrounded by
square brackets. However, the semantics are quite di↵erent. Basket expressions
have side-e↵ects; they change the underlying baskets during query evaluation.
All tuples that qualify the basket (sub-)expression are removed from the un-
derlying store immediately after they have been processed. This may leave a
partially emptied basket behind. Note that the baskets expressions exclusively
express the processing requirement of a single query at the query language level.
In case where multiple queries require access of the same basket, it is the obli-
gation of the processing engine to guarantee correctness and completeness of
continuous stream of answers. For example, by following the Separate Baskets
processing model 3.3.2 we provide source independence among concurrent con-
tinuous queries. Recall that in this scheme we provide an individual basket for
each continuous query, thus each one is free to modify its input based on its own
needs. Note, a basket can also be inspected outside a basket expression. Then,
it behaves as an append-only relational table, i.e., tuples are not removed as a
side-e↵ect of the evaluation.

Example 3. The basket expression in the query below takes precedence and
extracts all tuples from basket X. All tuples selected are immediately removed
from basket X (i.e., the basket is emptied), but they remain accessible through
B during query execution. From this temporary table we select the payloads
satisfying the predicate.

SELECT count(*)
FROM [SELECT *

FROM X
ORDER BY id ] as B

WHERE B.payload >100;

The basket expressions initiate tuple transport in the context of the query.
The net e↵ect is a stream within the query engine. X is either a basket or a
table. Tuples are removes only in the case that X is a basket. Otherwise, the
tuples in the base table remain intact. In MonetDB, deletion from tables is
much more expensive, because it involves a transaction commit. This involves
moving the tuples deleted to a persistent transaction log. Baskets avoid this
overhead, no transaction log is maintained.
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4.2.4 Continuous Queries

Continuous queries are long-standing queries that we should continuously eval-
uate while new incoming stream data arrives. Conceptually, the query is re-
executed whenever the database state changes. Two cases should be distin-
guished. For a non-streaming database, the result presented to the user is an
updated result set and it is the task of the query processor to avoid running the
complete query from scratch over and over again. For a streaming database,
repetitive execution produces a stream of results. The results only reflect the
latest state and any persistent state variable should be explicitly encoded, e.g.,
using stream aggregates and singleton baskets.

In DataCell we consider every query that refers to at least one stream basket
in the from clause, as a continuous query.

Example 4. A snippet of a console session is shown below. The continuous
query can be stopped and restarted by controlling the underlying basket state.

CREATE BASKET MyFavored as
[SELECT *
FROM X
WHERE payload>100];

enable MyFavored;

[SELECT * FROM MyFavored];

-- part of the result set
[ 135, 2007-03-27:22:45, 123]
[ 136, 2007-03-27:22:46, 651]
[ 137, 2007-03-27:22:49, 133]

4.2.5 Application Modeling

The graphical user interface closely matches the network view of the flow de-
pendencies amongst the baskets, (continuous) queries, tables, and the interface
(Liarou et al., 2012b). Compared to similar tools, e.g., Borealis (Abadi et al.,
2005), the coarse grain approach of SQL as a specification vehicle pays o↵.

Example 5. In the previous chapter, when introducing the basic DataCell com-
ponents (see Section 3.2), we showed how they interact and synthesize a simple
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query scenario. In our basic example (Figure 3.1) a receptor R appends the new
incoming data to a basket B1. When new data appears, a submitted continuous
query Q obtains access to the incoming stream and the data in the persistent
table T , and it is evaluated. The produced results are placed in basket B2, from
where the emitter can finally collect them and deliver them to the client. The
SQL-like syntax for this example is as follows.

--An Alarm Application
CREATE BASKET B1(

tag timestamp default now(),
pl integer);

COPY INTO B1 FROM ’alarms:60000’;

CREATE BASKET B2(
tag timestamp,
pl integer,
msg string);

COPY FROM B2 INTO ’console’;

CREATE TABLE T1(
pmin integer,
pmax integer);

INSERT INTO B2
SELECT tag, pl, "Warning"
FROM T1, [SELECT * FROM C1 WHERE pl > 0] as A,
WHERE A.pl < T1.pmin or A.pl > T1.pmax;

4.3 Querying Streams

In this section, we illustrate how the key features of a query language for data
streams are handled in the DataCell model using StreamSQL (StreamSQL,
2009), as a frame of reference. Its design is based on experiences gained in
the Aurora (Balakrishnan et al., 2004) and the CQL (DBL, ) in the STREAM
(Arasu et al., 2003; Babcock et al., 2004) projects. It also reflects an expe-
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rience based approach, where the language design evolved based on concrete
applications.

4.3.1 Filter and Map

The key operations for a streaming application are the filter and the map

operations. The filter operator inspects individual tuples in a stream removing
the ones that satisfy the filter. The map operator takes an event and constructs a
new one using built-in operators and calls to linked-in functions. Both operators
directly map to the basket expression. There are no up-front limitations with
respect to functionality, e.g., predicates over individual events or lack of access
to global tables. A simple stream filter is shown below. It selects outlier values
within batches of precisely 20 events in temporal order and keeps them in a
separate basket.

INSERT INTO outliers
SELECT b.tag, b.payload
FROM [SELECT top 20

FROM X
ORDER BY tag] as b

WHERE b.payload >100;

The top clause is equivalent to the SQL limit clause and requires the result
set of the sub-query to hold a precisely defined number of tuples. In combination
with the order by clause applied to the complete basket before the top is
applied simulates a fixed-sized sliding window over streams.

4.3.2 Split and Merge

Stream splitting enables tuple routing in the query engine. It is heavily used to
support a large number of continuous queries by factoring out common parts.
Likewise, stream merging, which can be a join or gather, is used to merge
di↵erent results from a large number of common queries. Both were challenges
for the DataCell design. The first one due to the fact that standard SQL lacks
a syntactic construct to spread the result over multiple targets. The second one
due to the semantic problem found in all stream systems, i.e., at any time only
a portion of the infinite stream is available. This complicates a straight forward
mapping of the relational join, because an infinite memory is required.

The SQL’99 with construct comes closer to what we need for a split opera-
tion. It defines a temporary table (or view) constructed as a prelude for query
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execution. Extending its semantics to permit a compound SQL statement block
gives us the means to selectively split a basket, including replication. It is an
orthogonal extension to the language semantics. The statement below partially
replicates a basket X into two baskets Y and Z. The with compound block is
executed for each basket binding A.

WITH A AS [SELECT * FROM X]
BEGIN
INSERT INTO Y
SELECT * FROM A WHERE A.payload > 100;

INSERT INTO Z
SELECT * FROM A WHERE A.payload <= 200;

END;

The way out to resolve the merge operation over streams is by window-
based joins. They give a limited view over the stream and any tuple outside the
window can be discarded from further consideration. The boundary conditions
are reflected in the join algorithm. For example, the gather operator needs both
streams to have a uniquely identifying key to glue together tuples from di↵erent
streams.

In DataCell, we elegantly circumvent the problem using the basket expres-
sion semantics and the computational power of SQL. The DataCell immediately
removes tuples that contribute to a basket predicate, i.e., if the predicate is satis-
fied, it becomes true. In particular, the DataCell removes matching tuples used
in a merge predicate. This way, merging operations over streams with uniquely
tagged events are straight-forward. Delayed arrivals are also supported. Non-
matched tuples remain stored in the baskets until a matching tuple arrives, or
a garbage collection query takes control.

Below we see a join between two baskets X and Y with a monotone increasing
unique id sequence as the target of the join. The join basket expression produces
all matching pairs. The residue in each basket are tuples that do not (yet) match.
These can be removed with a controlling continuous query, e.g., using a time-out
predicate. Taken together they model the gather semantics.
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SELECT A.*
FROM [SELECT * FROM X,Y WHERE X.id=Y.id] as A;
INSERT INTO trash [SELECT ALL

FROM X
WHERE X.tag < now()-1 hour];

INSERT INTO trash [SELECT ALL
FROM Y
WHERE Y.tag < now()-1 hour];

4.3.3 Aggregation

The initial strong focus on aggregation networks has made stream aggregations
a core language requirement. In combination with the implicit serial nature of
event streams, most systems have taken the route to explore a sliding window
approach to ease their expressiveness.

In DataCell, we have opted not to tie the concepts that strongly. Instead,
an aggregate function is simply a two phase processing structure: aggregate
initialization followed by incremental updates.

The prototypical example is to calculate a running average over a single
basket. Keeping track of the average payload calls for creation of two global
variables and a continuous query to update them. Using batch processing the
DataCell can handle such cases as shown in the following example. In this case,
updates only take place after every 10 tuples.

DECLARE cnt integer;
DECLARE tot integer;
SET tot =0;
SET cnt=0;
WITH Z AS [SELECT top 10 payload FROM X]
BEGIN
SET cnt = cnt +(select count(*) from Z);
SET tot = tot +(select sum(*) from Z);

END;

4.3.4 Metronome and Heartbeat

Basket expressions can not directly be used to react to the lack of events in
a basket. This is a general problem encountered in data stream management
systems. A solution is to inject marker events using a separate process, called
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a metronome function. Its argument is a time interval and it injects a value
timestamp into a basket.

The metronome can readily be defined in an SQL engine that supports Per-
sistent Stored Modules and provides access to linked in libraries. This way, we
are not limited to time-based activation, but we can program any decision func-
tion to inject the stream markers. The example below injects a marker tuple
every hour.

CREATE FUNCTION metronome (t interval)
RETURNS timestamp;

BEGIN
CALL sleep(t);
RETURN now();

END;
INSERT INTO into X(tag,id,payload)
[SELECT null,metronome(1 hour),null];

Furthermore, its functionality can be used to support another requirement
from the stream world, the heartbeat. This component ensures a uniform stream
of events, e.g., missing elements are replaced by a dummy if nothing happened
in the last period. At regular intervals the heartbeat injects a null-valued tuple
to mark the epoch. If necessary, it emits more tuples to ensure that all epochs
seen downstream before the next event are handled.

The heartbeat functionality can be illustrated using a join between two bas-
kets. The first one models the heartbeat and the second one the events received.
This operation is in-expensive in a column-store. We assume that the heartbeat
basket contains enough elements to fill any gap that might occur. Its clock
runs ahead of those attached to the events. In this case, we can pick all rel-
evant events from the heartbeat basket and produce a sorted list for further
processing.

The heartbeat functionality can be modeled using the metronomes and the
basket expressions as follows.

INSERT INTO HB [SELECT null, T, null
FROM [select metronome(1 second)]];

[SELECT * FROM X
UNION
SELCT * FROM HB
WHERE X.tag < max(SELECT tag FROM HB)];
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4.3.5 Basket Nesting

A query may be composed of multiple and nested basket expressions. The
Petri-net interpretation creates intermediate results as soon as a basket becomes
non-empty. Each incurs an immediate side-e↵ect of tuples movement from its
source to a temporary table in the context of the query execution plan. Yet, a
compound query is only executed when all basket sub-expressions have produced
a result. Consequently the query result depends on their evaluation order.
However, since at any point in time the database seen is complete snapshot, it is
up to the programmer to resolve evaluation order dependencies using additional
predicates.

A design complication arises when two continuous queries use basket expres-
sions over the same basket and if they are interested in the same events. Then
we have a potential conflict. These events will be assigned randomly to either
query. If both need access to the same event, it is mandatory to split the basket
and replicate the events to a private basket first.

4.3.6 Bounded Baskets

The arrival rate of stream events may surpass the capabilities of queries to
handle them in time before the next one arrives. In that case, the baskets
grows with a backlog of events. To tackle this problem, StreamSQL provides a
mechanism to identify “slack”, i.e., the number of tuples that may be waiting
in the basket. The remainder is silently dropped.

Although this problem is less urgent in the bulk processing scheme of Mon-
etDB, it might still be wise to control the maximum number of pending events
in bursty environments. Of course, the semantics needed strongly depend on
the application at hand. Some may benefit from a random sampling approach,
others may wish to drown old events. Therefore, a hardwired solution should
be avoided.

Example 6. The query below illustrates a scheme to drop old events. Although
this does not close the gap completely, the basket can be evaluated in micro-
seconds.

SELECT count(B.*), ’ dropped’
FROM [SELECT *

FROM X
WHERE id < max(SELECT id FROM X)-100)] as B;
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4.3.7 Stream Partitioning

Stream engines use a simple value-based partitioning scheme to increase the
parallelism and to group events. A partitioning generates as many copies of
the down-stream plans as there are values in the partitioning column. This
approach only makes sense if the number of values is limited. It is also not
necessary in a system that can handle groups e�ciently.

In the context of MonetDB, value-based partitioning is considered a tactical
decision taking automatically by the optimizers. A similar route is foreseen in
handling partitions over streams to increase parallelism. Partitioning to group
events of interest still relies on the standard SQL semantics.

Example 7. A continuous query that returns a sorted list by tra�c per minute
become:

SELECT Z.tag, Z.cnt
FROM [SELECT minute(tag) as tag,

count(*) as cnt
FROM X
GROUP BY tag] as Z

ORDER BY Z.tag;

4.3.8 Transaction Management

Transaction semantics in the context of volatile events and persistent tables is
an open research area. For some applications non-serializable results should be
avoided and traditional transaction primitives may be required. In StreamSQL
this feature is cast in a lock and unlock primitive. It makes transaction control
visible at the application level with crude blocking operators.

The approach taken in the DataCell is to rely on the (optimistic) concur-
rency control scheme and transaction logger as much as possible. All continuous
queries have equal precedence and their actual execution order is explicitly left
undefined. If necessary, it should be encoded in a control basket or explicit
dependencies amongst queries.

4.3.9 Sliding Windows

Most DSMSs define query processing around streams seen as a linear ordered
list. This naturally leads to sequence operators, such as next, follows, and
window expressions. The latter extends the semantics of the SQL window
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construct to designate a portion of interest around each tuple in the stream.
The window operator is applied to the result of a query and, combined with
the iterator semantics of SQL, mimics a kind of basket expression.

However, re-using SQL window semantics introduce several problems. To
name a few, they are limited to expressions that aggregate only, they carry spe-
cific first/last window behavior, they are read-only queries, they rely on predi-
cate evaluation strictly before or after the window is fixed, etc. In StreamSQL
the window can be defined as a fixed sized stream fragment, a time-bounded
stream fragment, or a value-bound stream fragment only.

The basket expressions provide a much richer ground to designate windows of
interest. They can be bound using a sequence constraint, they can be explicitly
defined by predicates over their content, and they can be based on predicates
referring to objects elsewhere in the database.

Example 8. A sliding window of precisely 10 elements and a shift of two is
encapsulated in the query below. A time bounded window simply requires a
predicate to inspect the clock.

SELECT * FROM [SELECT * FROM X limit 2]
UNION
SELECT * FROM X limit 8;

--create window Xw (size 10 seconds
-- advance 2 seconds);
SELECT *
FROM [SELECT *

FROM X
WHERE tag < min(SELECT X.tag) + 2 seconds]

UNION
SELECT *
FROM X
WHERE tag < min(SELECT X.tag) + 8 seconds;

The generality of the basket expressions come at a price. Optimization of
sequence queries may be harder if the language or scheme does not provide
hooks on this property. However, we still allow window functions to be used
over the baskets. Their semantics is identical to applying them to an SQL table.
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4.4 Summary

In this chapter, we presented the DataCell language interface. A small extension
of the relational algebra engine of MonetDB is su�cient to produce a fully
functional prototype DataCell implementation. The basket expressions, blended
into the syntax and semantics of SQL 2003, provide an elegant solution to define
stream-based applications. The language concepts introduced are compared
against building blocks found in “pure” stream management systems. They can
all be expressed in a concise way and demonstrate the power of starting the
design from a full-fledged SQL implementation.

The proposed language interface is an alternative suggestion to the existing
SQL-like languages for data streams, e.g., (DBL, ; StreamSQL, 2009). Basket
expressions are proposed as a general way to express predicate windows over
multiple streams. However, the extensible nature of MonetDB/DataCell archi-
tecture allows the complete language disconnection from the underlying engine
if it is necessary. This means that with the appropriate changes in the external
part of the MonetDB/DataCell software stack, i.e., in the parser and in part
of the optimizer rules, we can easily set and implement a di↵erent language
interface.

In the following chapter we study one of the most crucial pure stream process-
ing problems, i.e., incremental processing for window-based continuous queries.
Even with the conventional underlying infrastructure that MonetDB o↵ers to
DataCell, we manage to compete against a specialized stream engine, elevating
incremental processing at the query plan level, instead of building specialized
stream operators. Then, Chapter 6 concludes the thesis and discusses a num-
ber of interesting open topics and research directions towards a complete data
management architecture that integrates database and stream functionalities in
the same kernel.
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Chapter 5

Incremental Processing in
DataCell⇤

5.1 Introduction

In the two previous chapters, we described the basic DataCell architecture and
the SQL-extended query language interface that allow us to formulate and sub-
mit continuous queries, encompassing streams and tables. However, numerous
research and technical questions are still waiting for answers and solutions in
the DataCell context. The most prominent issues are the ability to provide spe-
cialized stream functionality and hindrances to guarantee real-time constraints
for event handling. Chapter 3 illustrates the DataCell architecture but leaves
open issues related to real-time stream processing. Here, we make the next step
towards a fully functional streaming DBMS kernel; we study how we can deal
with incremental processing while staying faithful at the DataCell philosophy
that dictates minimal changes to the underlying kernel.

⇤The material in this chapter has been the basis for a paper submitted for publication
entitled “Enhanced Stream Processing in a DBMS Kernel” (Liarou et al., 2012a) and at
the PVLDB12 paper “MonetDB/DataCell: Online Analytics in a Streaming Column-Store”
(Liarou et al., 2012b).

107
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5.1.1 Contributions

In this chapter, we focus on the core of streaming applications, i.e., incremen-
tal stream processing and window-based processing. Window queries form the
prime programming paradigm in data streams, i.e., we break an initially un-
bounded stream into pieces and continuously produce results using a focus win-
dow as a peephole on the data content passing by. Successively considered
windows may overlap significantly as the focus window slides over the stream.
It is the cornerstone in the design of specialized stream engines and typically
specialized operators are designed to avoid work when part of the data falls
outside the focus window.

Most relational operators underlying traditional DBMSs cannot operate in-
crementally without a major overhaul of their implementation. Here, we show
that e�cient incremental stream processing is, however, possible in a DBMS
kernel handling the problem at the query plan and scheduling level. For this to
be realized the relational query plans are transformed in such a way that the
stream is broken into pieces and di↵erent portions of the plan are assigned to
di↵erent portions of the focus window data. DataCell takes care that this “par-
titioning” happens in such a way that we can exploit past computation during
future windows. As the window slides, the stream data also “slides” within the
continuous query plan.

In this chapter, we illustrate the methods to extend the MonetDB/DataCell
optimizer with the ability to create and rewrite them into incremental plans.
A detailed experimental analysis demonstrates that DataCell supports e�cient
incremental processing, comparable to a specialized stream engine or even better
in terms of scalability.

5.1.2 Outline

The rest of this chapter is organized as follows. Firstly, Section 5.2 presents a
short recap of the notion of window-based stream processing. Then, Sections 5.3
and 5.4 discuss in detail how we achieve e�cient incremental processing in Dat-
aCell. Section 5.6 provides a detailed experimental analysis. We compare the
incrementalist DataCell kernel with our basic architecture (discussed in Chapter
3) and a specialized state-of-the art commercial stream engine. Finally, Section
6 concludes the chapter.
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Figure 5.1: Window-based stream processing

5.2 Window-based Processing

Continuous computation of long standing queries in large scale streaming en-
vironments is a huge challenge from a data management perspective. Contin-
uously considering all past data is not a scalable solution. Especially when it
comes to blocking operators, e.g., a join, it is unrealistic to continuously analyze
all data purely from a system resources point of view. This way, window-based
queries have been introduced to assist e�cient query processing in streaming
environments. By windowing a continuous query, we delimit the boundaries of
the initially unbounded stream and we continuously produce results on di↵erent
portions of the data. Figure 5.1 shows simple examples of how window-based
processing di↵ers from “complete” stream processing.

Figure 5.1(a) shows the typical unbounded stream processing. This is often
referred to as landmark window in the literature, i.e., the processing window is
continuously growing. Figures 5.1(b) and (c) on the other hand, show window
processing where as new data tuples arrive, some of the old ones expire. This
way, a limited window of tuples is defined and the system is called to produce
answers only for the tuples within the current window, ignoring the larger vol-
ume of past data preceding this window. The most straight-forward type are
tumbling windows (cf., Fig. 5.1(b)). Here, the size of the step, i.e., the number
of tuples we move the window forward, is equal to the window size. This leads
to non overlapping windows of tuples, i.e., every tuple is considered (at most)
once for a given query.

Other than making query processing possible by limiting the amount of
processed data, window-based processing also raises a number of challenges.
Especially, sliding window queries, i.e., queries where the step is smaller than
the window such that subsequent windows overlap, lead to very interesting
scenarios and processing challenges. Figure 5.1(c) shows an example of sliding
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Algorithm 2 The factory for continuous re-evaluation of a tumbling window
query that selects all values of attribute X in range v1-v2.

1: input = basket.bind(X)
2: output = basket.bind(Y)
3: while true do
4: while input.size < windowsize do
5: suspend()
6: basket.lock(input)
7: basket.lock(output)
8: w = basket.getLatest(input,windowsize)

9: result = algebra.select(w,v1,v2)

10: basket.delete(input,windowsize)
11: basket.append(output,result)

12: basket.unlock(input)
13: basket.unlock(output)
14: suspend()

windows. The ideal goal is that every time we need to recompute the result
of a query over the current window, we would like to analyze as little data as
possible by cleverly exploiting past computation actions over previous windows
that overlap with the current one.

In other words, the result of each window should be incrementally computed,
by reusing valid past results. This incremental behavior is fundamental in all
stream algorithms, techniques and systems. In addition, it is a functionality
that is missing from a typical DBMS. Thus, it becomes a unique problem for
the DataCell context as well.

5.3 Continuous Re-evaluation

Complete re-evaluation is the straight-forward approach when it comes to con-
tinuous queries for a DBMS engine. The idea is simple; every time a window is
complete, i.e., enough tuples have arrived, we compute the result over all tuples
in the window. In fact, this is the way that any DBMS can support continu-
ous query processing modulo the addition of certain scheduling and triggering
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mechanisms.

We can achieve this kind of processing by applying minimal changes to the
existing DataCell architecture. Assuming, for the time being, single stream
queries and tumbling windows, we only need to make sure that a query plan
will “consume” |W | tuples of the input stream at a time, where |W | is the size of
the window. This means that |W | tuples will be considered for query processing
and subsequently |W | tuples are dropped from the input basket while of course
the query plan will not run unless at least |W | tuples are present.

All this boils down to a set of simple rewriting rules for the continuous
query plans of DataCell. For example, Algorithm 2 shows such a continuous re-
evaluation query plan, for a simple window range query. The window semantics
a↵ect the plan only in such a way that it checks whether there are enough input
tuples to fill a complete window (lines 4 and 5 in Algorithm 2). In addition,
it only considers and subsequently drops |W | tuples at a time (lines 8 and 10
respectively in Algorithm 2).

To support also sliding overlapping windows with a step size of |w| < |W |
tuples, only one more minor change is required, refining line 10 in Algorithm 2
as follows. Instead of deleting the complete window we would only delete the
oldest |w| tuples that expire per step, namely the sliding step that encompass
those tuples that are not valid in the next window.

This way, re-evaluation is quite simple to achieve in DataCell and as before
the core of the query plan can be any kind of complex query, allowing DataCell
to support the full strength of SQL and the complete optimizer module.

5.4 Incremental Processing

Although the direction seen in the previous section is su�cient for tumbling
and hopping windows, i.e., windows that slide per one or more than a full
window size at a time, it is far from optimal when it comes to the more common
and challenging case of overlapping sliding windows. The drawback is that we
continuously process the same data over and over again, i.e., a given stream
tuple t will be considered by the same query multiple times until the window
slides enough for t to expire. For this, we need e�cient incremental processing,
a feature missing from typical DBMSs. Here, we discuss how we address this
fundamental stream problem in DataCell.
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5.4.1 The Goal

For ease of presentation, we begin with a high-level description of the technique
at large, before we continue to discuss in more detail the various decisions and
options.

The vision is to create a full-fledged stream engine without sacrificing any of
the existing DBMS technology benefits. Our e↵ort for incremental processing
here successfully follows this path; without creating new specialized operators,
we support sliding window queries by carefully rewriting and scheduling the
existing DBMS query plans. This way, we can exploit all sophisticated query
optimization techniques of a modern DBMS and all highly optimized operator
implementations as well as query plan layouts.

5.4.2 Splitting Streams

Conceptually, DataCell achieves incremental processing by partitioning a win-
dow into n smaller parts, called basic windows. Each basic window is of equal
size to the sliding step of the window and is processed separately. The resulting
partial results are then merged to yield the complete window result.

Assume a window W

i

= w1, w2, . . . , wn

split into n basic windows. After
processing W

i

, all windows after that can exploit past results. For example, for
window W

i+1 = w2, w3, . . . , wn+1 only the last basic window w

n+1 contains new
tuples and needs to be processed, merging its result with the past partial results.
This process continues as the window slides. E↵ectively, for each new window
we only need to process the new tuples as opposed to the naive re-evaluation
method that needs to process all window tuples repeatedly.

5.4.3 Operator-level vs Plan-level Incremental Processing

The basic strategy described above is generally considered as the standard back-
bone idea in any e↵ort to achieve incremental stream processing. It has been
heavily adopted by researchers and has lead to the design of numerous special-
ized stream operators such as window stream joins and window stream aggre-
gates, e.g., (Dobra et al., 2002; Ghanem et al., 2007; Golab, 2006; Kang et al.,
2003; Zhu and Shasha, 2002; Li et al., 2005).

Stream engines provide radically di↵erent architectures than a DBMS by
pushing the incremental logic all the way down to the operators. Here, in the
context of DataCell we design and develop the incremental logic at the query
plan level, leaving the lower level intact and thus being able to reuse the complete
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storage and execution engine of a DBMS kernel. The motivation is to inherit all
the good properties of the DBMS regarding scalability and robustness in heavy
workloads as demanded by nowadays stream applications.

The questions to answer then are:

(1) How can we achieve this in a generic and automatic way?

(2) How does it compare against state-of-the-art stream systems?

In this section, we will describe our design and implementation in DataCell,
where we extend the optimizer to transform normal continuous query plans into
incremental ones, which a scheduler is responsible to trigger. In the next section,
we will show the advantages of this approach over specialized stream engines as
well as the possibilities to combine those two extremes.

5.4.4 Plan Rewriting

The key point is careful and generic query plan rewriting. DataCell takes as in-
put the query plans that the SQL engine creates, leveraging the algebraic query
optimization performed by the DBMS’s query optimizer. Fully exploiting Mon-
etDB’s execution stack, the incremental plan generated by DataCell is handed
back to MonetDB’s optimizer stack for physical plan optimization.

To rewrite the original query plan into an incremental one, DataCell applies
four basic transformations;

(1) Split the input stream into n basic windows

(2) Process each (unprocessed) basic window separately

(3) Merge partial results

(4) Slide to prepare for the next basic window

Figure 5.2 shows this procedure schematically. For the first window, we run
part of the original plan for each basic window while intermediates are directed
to the remainder of the plan to be merged and execute the rest of the operators.
As the window slides we need to process only the new data avoiding to reaccess
past basic windows (shown faded in Figure 5.2) and perform the proper merging
with past intermediates. Achieving this for generic and complex SQL plans is
everything but a trivial task. Thus, we begin with an over-simplified example
shown in Algorithm 3 to better describe these concepts.
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Splitting

The first time the query plan runs, it will split the first window into n basic
windows (line 7). This task is in practice an almost zero cost operation in
MonetDB and results in creating a number of views over the base input basket.

Query Processing

The next part is to run the actual query operators over each of the first n � 1
basic windows (lines 8-11), calculating their partial results. While in general
more complicated (as we will see later on), for this simple single-stream, single-
operator query the task boils down to simply calling the select operator for each
basic window. For more complex queries, we will see that only part of the plan
runs on every single basic window, while there is another part of the incremental
plan that runs on merged results.

Basic Loop

The plan then enters an infinite loop where it (a) runs the query plan for the last
(latest) basic window and (b) merges all partial results to compose the complete
window result. The first part (line 18) is equivalent to processing each of the
first n� 1 basic windows as discussed above. For the simple select query of our
example, the second part can create the complete result by simply concatenating
the n partial results (line 19). We will discuss later how to handle the merge in
more complex cases.

Transition Phase

Subsequently, we start the preparation for processing the next window, i.e.,
for when enough future tuples will have arrived. Basically, this means that
we first shift the basic windows forward by one as indicated in line 20 for this
example. Then, more importantly we make the correct correlations between
the remaining intermediate results, this transition (line 21) is derived by the
previous one. In the current example both transitions are aligned, but in the
case of more complicated queries (e.g., multi-stream query with join operators),
we should carefully proceed this step.
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Algorithm 3 The factory for incremental evaluation of a single stream window
query that selects all values of attribute X in v1-v2.

1: input = basket.bind(X)
2: output = basket.bind(Y)
3: while input.size < windowsize do
4: suspend()
5: basket.lock(input)
6: basket.lock(output)

7: w1, w2, . . . , wn

= basket.split(input,n)
8: res1 = algebra.select(w1,v1,v2)
9: res2 = algebra.select(w2,v1,v2)

10: . . .

11: res

n�1 = algebra.select(w
n�1,v1,v2)

12: while true do
13: while input.size < windowsize do
14: suspend()
15: basket.lock(input)
16: basket.lock(output)

17: w

n

= basket.getLatest(input,stepsize)
18: res

n

= algebra.select(w
n

,v1,v2)

19: result = algebra.concat(res1,res2,. . . ,resn)

20: w

exp

= w1, w1 = w2, w2 = w3, . . . , wn�1 = w

n

21: res1 = res2, res2 = res3, . . . , resn�1 = res

n

22: basket.delete(input,w
exp

)
23: basket.append(output,result)

24: basket.unlock(output)
25: basket.unlock(input)
26: suspend()

Intermediates Maintenance

Maintaining and reusing the proper intermediates is of key importance. In our
simple example, the intermediates we maintain are the results of each select
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W1

. . .

W1
W2

w1 . . .w2 w3 wnw1 . . .w2 wn

w1 . . .w2 wn-1 wn

. . .

Original 
Plan

First Window Second Window

Intermediates
stored

Intermediates
        exploited

Figure 5.2: Incremental processing at the query plan level

operator which are to be reused in the next window as well. In general, a
query plan may have hundreds even thousands of operators. The DataCell plan
rewriter maintains the proper intermediates by following the path of operators
starting from each basic window to associate the proper intermediates with the
proper basic window such as to know (a) how to reuse an intermediate and
(b) when to expire it. This becomes a big challenge especially in multi-stream
queries where an intermediate from one stream may be combined with multiple
intermediates from other streams, e.g., for join processing (we will see more
complex examples later on).

Continuous Processing

The next step is to discard the old tuples that expire (line 22) and deliver the
result to the output stream (line 23). After that, the plan pauses (line 26) and
will be resumed by the scheduler only when new tuples have arrived. Lines
13-14 ensure that the plan then runs only once there are enough new tuples to
fill a complete basic window.
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Discarding Input

In simple cases, as in the given example, once the intermediate results of the
individual basic windows are created, the original input tuples are no longer
required. Hence, to reduce storage requirements we can discard all processed
tuples from the input basket, even if they are not yet expired, keeping only the
respective intermediate results for further processing. Extending Algorithm 3
for achieving this is straightforward. A caveat seen shortly is that there are
cases, e.g., multi-stream matching operations like joins, where we cannot apply
this optimization, as we need access the original input data until it expires.

5.4.5 Generic Plan Rewriting

When considering more complex queries and supporting the full power of SQL,
the above plan rewriting goals are far from simple to achieve. How and when
we split the input, how and when we merge partial results are delicate issues
that depend on numerous parameters related to both the operator semantics
for a given query plan and the input data distribution.

In this way, our strategy of rewriting query plans becomes as follows. The
DataCell plan rewriter takes as input the optimized query plan from the DB
optimizer.

(1) The first step remains intact; it splits the input stream into n = |W |/|w|
disjoint pieces.

(2) In a greedy manner, it then consumes one operator of the target plan at
a time. For each operator it decides whether it is su�cient to replicate
the operator (once per basic window) or whether more actions need to be
taken.

The goal is to split the plan as deep as possible, i.e., allow as much of the
original plan operators to operate independently on each basic window. This
gives maximum flexibility and eventually performance as it requires less post
processing with every new slide of the window, i.e., less e↵ort in merging partial
results.

To ease the discussions towards a generic and dynamic plan rewriting strat-
egy, we continue by giving a number of characteristic examples where di↵erent
handling is needed than the simplistic directions we have seen before. Fig-
ures 5.3, 5.4, 5.5, 5.6 and 5.7 will help in the course of this discussion through a
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variety of queries. Note, that we show only the pure SQL query expression, cut-
ting out the full language statments of the continuous sliding window queries.
For each query, we show the reevaluated continuous query plan as well as the
DataCell incremental plan. The solid lines in the incremental query plan in-
dicate the basic loop, i.e., the path that is continuously repeated as more and
more tuples arrive. The rest of the incremental plan needs to be executed only
the first time this plan runs.

5.4.6 Exploit Column-store Intermediates

As we have already discussed, our design is on top of a column-store architecture.
Column-stores exploit vector based bulk processing, i.e., each operator processes
a full column at a time to take advantage of vector-based optimizations. The
result of each operator is a new column (BAT in MonetDB). In DataCell, we
do not release these intermediates once they have been consumed. Instead,
we selectively keep intermediates when processing one window to reuse them
in future windows. This e↵ectively allows us to put breakpoints in multiple
parts of a query plan given that each operator creates a new intermediate.
Subsequently, we can “restart” the query plan from this point on simply by
loading the respective intermediates and performing the remaining operators
given the new data. Which is the proper point to “freeze” a query plan depends
on the kind of query at hand. We discuss this in more detail below.

5.4.7 Merging Intermediates

The point where we freeze a query plan practically means that we no longer
replicate the plan. At this point we need to merge the intermediates so that
we can continue with the rest of the plan. The merging is done using the
concat operator. Examples of how we use this can be seen in all instances
of Figures 5.3 till 5.7. Observe, how before a concat operator the plan forks
into multiple branches to process each basic window separately, while after the
merge it goes back into a single flow. In addition, note that depending on the
complexity of the query, there might be more than one flow of intermediates
that we need to maintain and subsequently merge. For example, the plans in
Figure 5.3, 5.4 and 5.7 have a single flow of intermediates while the plans in
Figure 5.5 and 5.6 have two flows.
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Select a From stream Where v1 < a < v2

select

select

split

concat

result

stream stream

result

Normal Incremental

transition

suspend

Figure 5.3: Example of query plan transformations for range query

5.4.8 Simple Concatenation

The simplest case are operators where a simple concatenation of the partial
results forms the correct complete result. Typical representatives are the select
operator as featured in our previous examples, and any map-like operations. In
this case, the plan rewriter can simply replicate the operation, apply it to each
basic window, and finally concatenate the partial results. Figure 5.3 depicts
such an example for a range query.

Every time the window slides, we only have to go through the part of the
plan marked with solid lines in Figure 5.3, i.e., perform the selection on the
newest basic window and then concatenate the new intermediate with the old
ones that are still valid. The transition phase which runs between every two
subsequent windows guarantees that all intermediates needed and inputs are
shifted by one position as shown in Algorithm 3.
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Select sum(a) From stream Where a<v1

select

select

split

concat

result

stream stream

Normal Incremental

sum

sum

result

sum

transition

suspend

Figure 5.4: Example of query plan transformations for SUM function

5.4.9 Concatenation plus Compensation

The next category consists of operations that can be replicated as-is, but re-
quire some compensation after the concatenation of partial results to produce
the correct complete result. Typical examples are aggregations like min, max,
sum, as well as operators like groupby/distinct and orderby/sort. For these
examples, the compensating action is simply applying the very operation not
only on the individual basic windows, but also on the concatenated result as
shown for sum in Figure 5.4. Other operations might require di↵erent compen-
sating actions, though. For instance, a count is to be compensated by a sum of
the partial results.

Note how Figure 5.4 actually combines the sum with a selection such that the
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Select avg(a) From stream Where a<v1

select 

select

split

concat

result

stream stream

Normal Incremental

avg

sum

result

sum

transition

suspend

count

concat

sum

div

Figure 5.5: Example of query plan transformations for AVG function

selection is performed only on the basic windows, while the sum-compensation
is required after the concatenation.

5.4.10 Expanding Replication

A third category consists of operations that cannot simply be replicated to the
basic windows as-is, but need to be represented by multiple di↵erent operations.
For instance, Figure 5.5 sketches the incremental calculation of average. In-
stead of simply replicating the average operation, we first need to calculate
sum and count separately for each basic window, creating two separate data
flows. Then, the global sum and count after concatenation are derived using
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Select a1,max(a2) From stream Where a1<v1 Group by a1

select

result

a1

groupby

a2

reconstruct

max

select

split

concat

a1

groupby

result

groupby

transition

suspend

reconstruct

max

a2

concat

max

Normal Incremental

Figure 5.6: Example of query plan transformations for GROUP BY query

the respective compensating actions as introduced above. Finally, dividing the
global sum by the global count merges the two data flows, again, to yield the
requested global average.

5.4.11 Synchronous Replication

All cases discussed so far consider unary operations, either individually or in
linear combinations, involving only a single attribute, and hence a single input
data flow with columnar evaluation. Once multiple attributes are involved, we
get multiple, possibly interconnected data flows as depicted for a grouped ag-
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select max(a1) from streamA, streamB where a1<v1 and b1<v2 and a1=b1
Normal Incremental

select

result

a1 b1

join

max

split

a1

max

concat

max

result

suspend

transition

join

b1

split

select select

Figure 5.7: Example of query plan transformations for join query

gregation query in Figure 5.6. Canonically applying the rewrite rules discussed
above, we can replicate the di↵erent data flows synchronously over the basic
windows and use the compensating actions to merge the data flows into a single
result just as in the original query plan.

5.4.12 Multi-stream Queries

All cases discussed above only consider a single data stream and (from an N -ary
relational point of view) unary (i.e., single-input) operations. In these cases, it is
su�cient to simply replicate the operations as often as there are basic windows.
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For multiple data streams and N -ary operations to combine them, the situation
is more complex. Consider, for instance, the case of two streams and a join
to match them as depicted in Figure 5.7. For simplicity of presentation we
assume that both streams use the same windows size |W | and the same step
size |w|. Given that we create the n = |W |/|w| basic windows per stream as time
slices, i.e., independently of the actual data (e.g., the join attribute values), we
need to replicate the join operator n

2 times to join each basic window from the
left stream with each basic window from the right stream. As with the other
examples, the dashed operator instances in Figure 5.7 need to be evaluated
only once during the initial preface. The solid operator instances need to be
evaluated repeatedly, once for each step of the sliding window. Note that in this
case we cannot discard the selection results once the join has consumed them
for the first time. Rather, they need to be kept and joined with newly arriving
data until the respective basic windows expire.

5.4.13 Landmark Window Queries

Landmark queries di↵er from sliding windows queries in that subsequent win-
dows share the same fixed starting point (“landmark”), i.e., tuples do not expire
per window step. Tuples either never expire, or at most very infrequently, and
then all past tuples expire by resetting the global landmark.

Supporting such queries is straightforward in our design. Since data never
expires, we do not have to keep individual intermediate results per basic windows
to concatenate the active ones per step. Instead, we need to keep only one
cumulative result for each concat operation in our DataCell plans in Figures 5.3
till 5.7. In fact, there is not even a need to split the preface in n basic windows.
The initial window can be evaluated in one block; only newly arriving data is
evaluated once a basic windows is filled as discussed above.

5.4.14 Time-based Sliding Windows

Our approach is generic enough to support both main sliding window types,
i.e., count-based and time-based queries. In the first case, the window size and
the sliding function are expressed in quantity of tuples, so counting and slicing
the input stream is a straightforward process. In the case of time-based queries,
the window parameters are defined in terms of time, e.g., query with window
size 1 hour that slides per 10 minutes. Once a tuple arrives into the system
it is tagged with a timestamp that indicates its arrival time (we could also
process the window based on the generation tuple time). The splitting of input
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stream now happens taking into account the tuple timestamps. We devide the
stream into time intervals, let’s say equal to the sliding period. This means
that each generated basic windows contains as many tuples as they arrived in
the corresponding time interval, so we could end up with unequally filled in
basic windows. After that point, DataCell processes the time-based window
query following the same methodology we have discussed so far. Empty basic
windows are recognized and skip processing.

5.4.15 Optimized Incremental Plans

The decision to split the initial window into n = |W |/|w| basic windows is
purely driven by the semantics of sliding window queries. Further performance
considerations are not involved. Consequently, the DataCell incremental plans
as described so far start processing the next step only once su�cient tuples have
arrived to fill a complete basic window. The response time from the arrival of
the last tuple to fill the basic window until the result is produced is hence
determined by the time to process a complete basic window of |w| tuples (plus
merging the partial results of all n active basic windows).

However, since tuples usually arrive in a steady stream, a fraction of the
basic window could be processed before the last tuple arrives. This would leave
fewer tuples to be processed after the arrival of the last tuple, and could hence
shorten the e↵ective response time.

In fact, the above described DataCell approach provides all tools to imple-
ment this optimization. The idea is to process the latest basic window incre-
mentally just as we process the whole window incrementally. Instead of waiting
for |w| tuples, the basic loop is triggered for every |v| = |w|/m tuples, splitting
the basic window in m chunks. The results of the chunks are collected, but no
global result is returned, yet. Only once m chunks have been processed, the
m chunk results are merged into the basic window result, just like the n basic
window results are merged into the window result above. Then, the n basic
window results are merged and returned. This way, once the last basic window
tuple has arrived, only |v| = |w|/m tuples have to be processed before the result
can be returned.

Choosing m and hence |v| is a non-trivial optimization task. m = |w| mini-
mizes |v| and thus the pure data processing after the arrival of the last tuple, but
maximizes the overhead of maintaining and merging the chunk results. m = 1
is obviously the original case without optimization.

Given that both processing costs and merging overhead depend on numerous
hardly predictable parameters, ranging from query characteristics over data
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distributions to system status, we consider analytical models with reasonable
accuracy hardly feasible. Instead, we propose a dynamic self-adapting solution.
Starting with m = 1, we successively increase m, monitoring the response time
for each m for a couple of sliding steps. It is to be expected that the response
times initially decrease with increasing m as less data needs to be processed
after the arrival of the last tuple. Only once the increasing merging overhead
outweighs the decreasing processing costs, the response times increase, again.
Then, we stop increasing m and reset it to the value that resulted in the minimal
response time. Next to increasing m linearly or exponentially (e.g., doubling
with each step), bisection in the interval [1, |w|] is a viable alternative for finding
the best value for m.

5.5 Optimizer Pipeline in DataCell for Incre-
mental Query Plans

In this chapter, we presented the necessary transformation rules needed for the
creation of incremental query plans for continuous sliding window queries. In
this section, we discuss in more detail the optimization steps we implant in our
MonetDB/DataCell experimentation platform for generic plan generation.

Recall the first DataCell implementation (see Section 3.4), where we needed
to change the MonetDB optimizer, creating and adding new optimizer rules and
defining a new optimizer pipeline as follows.

datacell_pipe=inline,remap,evaluate,costModel,coercions,emptySet,
aliases,deadcode,constants,commonTerms,datacell,emptySet,aliases,
deadcode,reduce,garbageCollector,deadcode,history,multiplex

There, DataCell receives an one-time query plan which is produced by the
MonetDB optimizer and it transforms it to a continuous query plan that works
according to the re-evaluation logic. Now, we need to extend our optimization
phase again with a new set of rules in order to support incremental stream
processing for sliding window queries. The new optimizer pipeline we configure
is the following.

datacellInc_pipe=inline,remap,evaluate,costModel,coercions,emptySet,
aliases,deadcode,constants,commonTerms,datacell,emptySet,aliases,
deadcode,datacellSlicer,mergetable,deadcode,datacellIncrementalist,
reduce,garbageCollector,deadcode,history,multiplex
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Compared to the first datacell pipe, the new pipeline for incremental plans
contains three new optimizer rules i.e., datacellSlicer, mergetable and
datacellIncrementalist. Their main role is to transform a continuous query
plan to a incremental query plan. The main actions they take are as follows.

• Traverse the plan to find the baskets on which we apply the window pred-
icate.

• For each window, split the input window into n pieces, each piece is equal
to the sliding window step of the query. Conceptually the concatenation
of the n pieces constitutes the original data in the window. Replace the
original MAL instruction that materializes the window stream, with n

instructions that slice the window into each of the n pieces.

• Traverse the plan and find which MAL plan instructions we should repli-
cate, due to window splitting. These are the instructions where the original
materialized window stream is involved (explicitly and implicitly).

• Merge the intermediate materialized result at the proper place of the query
plan.

• Identify the original MAL plan instructions that cannot be replicated.
Give them the proper merged input.

• Introduce the instructions for the transition phase. Starting from the
source, i.e., slices, down to the intermediate results.

• Place the instructions that the engine should evaluate only once outside
the infinite loop.

• Wrap the MAL instructions that correspond to the new portion of the
data stream inside the infinite loop. Wrap inside the infinite loop the
merging and the transition steps; they need to run continuously

• Traverse the plan to find which slices are needed and which are not needed
for the rest of the incremental query evaluation.

This is a quite complex process, since we have to traverse and transform the
plan multiple times resulting to a significant makeover of the original query plan.
The benefit of developing the transformation logic at the optimization phase, is
that we can compile and transform any kind of complex queries automatically
while still exploiting traditional DBMS optimization strategies.
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Multi-query optimization for sliding window queries is an important area
of data streams research. At this level, our implementation does not prevent
automatic multi query optimization at the compilation phase.

5.6 Experimental Analysis

In this section, we provide a detailed experimental analysis of incremental pro-
cessing in our DataCell implementation over MonetDB v5.15 All experiments
are on a 2.4 GHz Intel Core2 Quad CPU equipped with 8 GB RAM and running
Fedora 12.

Experimental Set-up and Outline

We compare DataCell incremental processing against the typical re-evaluation
approach which reflects the straight-forward way of implementing streaming
over a DBMS. In the rest of this section, we refer to the former implementation
simply as DataCell

I

and the latter as DataCell

R

. In addition, we compare Dat-
aCell against a state-of-the-art commercial stream engine, clearly demonstrating
the successful design of incremental processing over an extensible DBMS kernel
and the potential of blending ideas from both worlds.

We study in detail the e↵ects of various parameters, i.e., query and data
characteristics such as window size, window step, selectivity factors, etc. The
performance metric used is response time, i.e., the time the system needs to
produce an answer, once the necessary tuples have arrived.

In the first part of the experimentation we will study DataCell

R

and DataCell

I

to acquire a good understanding of how a typical DBMS performance can be
transformed into an incremental one and the parameters that a↵ect it. Given
that these two implementations are essentially built over the same code base,
this gives a clear intuition of the gains achieved by the incremental DataCell
over a solid baseline. Then, with this knowledge in mind, in the second part we
will see in detail how this performance compares against a specialized engine
and what are the parameters that can swing the behavior in favor of one or the
other approach.

We will use a single stream and a multi-stream query.

(Q1) SELECT x1, sum(x2)
FROM stream
WHERE x1 > v1
GROUP BY x1
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Figure 5.8: Basic Performance

(Q2) SELECT max(s1.x1), avg(s2.x1)
FROM stream1 s1, stream2 s2
WHERE s1.x2 = s2.x2

5.6.1 Basic Performance

The first experiment demonstrates the response times as the windows slide.
Considering the single stream query first, we use a fixed window size, step and
selectivity. Here, we use window size |W | = 1.024 ⇤ 107 tuples, window step
|w| = 2 ⇤ 104 tuples, and 20% selectivity. This way, the DataCell plan rewriter
splits the initial window into 512 basic windows. Each time the system gets |w|
new tuples, it processes them and merges the result with those of the previous
511 basic windows.

Figure 5.8(a) shows the response times for 20 windows. For the initial win-
dow, both DataCell

R

and DataCell

I

need to process |W | tuples and achieve
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similar performance. DataCell is slightly faster mainly because executing the
group-by operation on smaller basic windows yields better locality for random
access. For the subsequent sliding steps (windows 2-20), DataCell

R

shows the
same performance as for the first one, as it needs to perform the same amount
of work each time. DataCell

I

, however, benefits from incremental processing,
resulting in a significant advantage over DataCell

R

. Reusing the intermediate
results of previously processed basic windows, DataCell

I

only needs to process
the |w| tuples of the new basic window, and merge all intermediate results.
This way, DataCell

I

manages to fully exploit the ideas of incremental process-
ing even though it is designed over a typical DBMS kernel. It nicely blends the
best of the stream and the DBMS world.

For the double stream query, Query 2, we treat both streams equally, using
window size |W | = 1.024 ⇤ 105 and window step |w| = 1600, i.e., the initial
windows of both streams are split into 64 basic windows each. Figure 5.8(b)
shows even more significant benefits for DataCell

I

over DataCell

R

. The reason
is that Query 2, is a complex multi-stream query that contains more expensive
processing steps, i.e., join operators. DataCell e↵ectively exploits the larger
potential for avoiding redundant work.

The fact that incremental processing beats re-evaluation is not surprising of
course (although later we will demonstrate the opposite behavior as well). What
is interesting to keep from this experiment is that by applying the incremental
logic at the query plan level we achieve a significant performance boost achieving
e�cient incremental processing within a DBMS.

5.6.2 Varying Query Parameters

The processing costs of a query depend on a number of parameters related to
the semantics of the query, e.g., selectivity, window size, step size, etc. These
are not tuning parameters, but reflect the requirements of the user. In general,
the more data a query needs to handle (less selective/bigger windows, etc.), the
more incremental processing benefits as it avoids processing the same data over
and over again. In the following paragraphs, we discuss the most important of
these parameters and their implications in detail.

Selectivity

We start with Query 1, using a window size of 1.024 ⇤ 107 tuples and a step of
2 ⇤ 104 tuples. By varying the selectivity of the selection predicate from 10% to
90%, we increase the amount of data that has to be processed by the group-by



5.6. EXPERIMENTAL ANALYSIS 131

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10  20  30  40  50  60  70  80  90

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

Selectivity (%)

(a) Vary query selectivity (Query 1)

DataCellR
 
 
 
 
 
 
 
 
 
 
 
 

DataCellI

 0

 1

 2

 3

 4

 5

 6

 7

 8

10-5 10-4 10-3 10-2

Selectivity (%)

(b) Vary Join Selectivity (Query 2)

DataCellR
 
 
 
 
 
 
 
 
 
 

DataCellI

Figure 5.9: Varying Selectivity

and aggregation. Figure 5.9(a) shows the results. For both DataCell

R

and
DataCell

I

, the response times for a sliding step increase close to linear with the
increasing data volume. However, the gradient for DataCell

R

is much steeper as
it needs to process the whole window. Incremental processing allows DataCell
to process only the last basic window, resulting in a less steep slope, and hence,
an increasing advantage over DataCell

R

.
A similar e↵ect can be seen with the join query in Figure 5.9(b). We use

|W | = 1.024 ⇤ 105 and |w| = 1600 and vary the join selectivity from 10�5%
to 10�2%. Due to the more expensive operators in this plan, the benefits of
DataCell are stronger than before.

Window Size

For our next experiment, we use Query 1 with selectivity 20% and vary the
window size. Keeping the number of basic windows invariant at 512, the step
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size increases with the total window size. Figure 5.10(a) reports the response
time required for a sliding step using three di↵erent window sizes. The bigger
the window, i.e., the more data we need to process, the bigger the benefits
of incremental processing with DataCell

I

over DataCell

R

materializing more
than a 50% improvement. Again this clearly demonstrates the e↵ectiveness of
our incremental design using a generic storage and execution engine.

Landmark Queries

By definition, the window size of landmark queries increases with each sliding
step, the step size is invariant. We run the following single-stream query as
landmark query, using |w| = 2.5 ⇤ 106 and 20% selectivity.

(Q3) select max(x1),sum(x2)
from stream where x1>v1
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Figure 5.10(b) shows the response time for 40 successive windows. As in
Figure 5.8, MonetDB and DataCell yield very similar performance for the initial
window, where both need to process all data. The re-evaluation approach of
DataCell then makes the response time grow linearly with the growing window
size. With DataCell

I

, the response time for the second query drops to what
is required to process only the new basic windows, and then stays constant at
that level, exploiting the benefits of incremental processing.

Step Size

With invariant window size, decreasing the step size in turn means increasing the
number of basic windows per window, i.e., the number of intermediate results
that need to be combined per step.

Figure 5.11(a) shows the results for Query 1. We use window size w =
1.024 ⇤ 107 tuples and a selectivity of 20%. With a small number of basic
windows, i.e., with a big window step, we still need to process a relatively big
amount of data each time a window is completed. Thus, response times are still
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quite high, e.g., for 2 basic windows. However, as the number of basic windows
increases, DataCell

I

improves quickly until it stabilizes once fixed initialization
costs dominate over data-dependent processing costs.

Figure 5.11(a) also breaks down the cost of DataCell

I

into two components.
First, is the actual query processing cost, i.e., the cost spent on the main oper-
ators of the plan that represent the original plan flow. Second is the merging
cost, i.e., all additional operators needed to support incremental processing, i.e.,
operators for merging intermediates, performing the transitions at the end of a
query plan and so on. Figure 5.11(a) shows that the cost of merging becomes
negligible. The main component is the query processing cost required for the
original plan operators.

Notice also that there is a small rise in the total incremental cost with many
basic windows (i.e., >1024 in Fig. 5.11(a)). This is attributed to the query
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processing cost which as we see in Figure 5.11(a) follows the same trend. What
happens is that with more basic windows, a larger number of intermediates
are maintained. Their total size remains invariant. However, with more basic
windows, there are more (though smaller) intermediates to be combined and
thus more operator calls required to make these combinations (the group-by)
in this case. The administrative cost of simply calling these operators becomes
visible with many basic windows.

Figure 5.11(b) shows a similar experiment for Query 2. Overall the trend
is similar, i.e., cutting the stream window into smaller basic windows, brings
benefits. The big di↵erence though is that the break down costs indicate an
opposite behavior than with Query 1. This time, the query processing cost be-
comes negligible while the merging cost is the one that dominates the total cost
once the query processing part becomes small. The reason is that the interme-
diates this time are quite big, meaning that simply merging those intermediates
is significantly more expensive. This cost is rather stable given that the total
size of intermediates is invariant with invariant window size, regardless of the
step size.

5.6.3 Optimization

As discussed in Section 5.4 and supported by the results of the above experi-
ments, the response time of incremental DataCell plans can further be improved
by pro-actively processing the last basic window in smaller chunks than the step
size defined in the query. This way, we favor a dynamic self-adapting approach
over a static optimization using an analytical cost model. Figure 5.12 shows the
results of an experiment, where DataCell successively doubles the number m of
chunks for a basic window every five steps as proposed in Section 5.4. Monitor-
ing the response times, DataCell observes a steady performance improvement
up to m = 512. With m = 1024, the performance starts degrading, triggering
DataCell to resort to m = 512.

5.6.4 Comparison with a Specialized Engine

Here, we test our DataCell prototype against a state-of-the-art commercial spe-
cialized engine. Due to license restrictions we refrain from revealing the actual
system and we will refer to it as SystemX. In addition, we tested a few open-
source prototypes but we were not successful in installing and using them, e.g.,
TelegraphCQ and Streams. These systems were academic projects and are not
supported anymore making it very di�cult to use them (in fact we are not
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aware of any stream papers comparing against any of these open-source stream
systems). For example, TelegraphCQ compiled on our contemporary Fedora 12
system only after fixing some architecture-specific code. However, we did not
manage to analyze and fix the crashes that occurred repeatedly when running
continuous queries. System Streams seemed to work correctly but the function-
alities of getting the performance metrics did not work. The most important
issue though is that it does not support sliding windows with a slide bigger
than a single tuple. Nevertheless, we are confident that comparison against a
most up-to-date version of a state-of-the-art commercial engine provides a more
competitive benchmark for our prototype.

For this experiment, we use the double stream Query 2. The metric reported
is the total time needed for the system to consume a number of sliding windows
and produce all results. Using a total of 100 windows and 64 basic windows per
window, we vary the window size between |W | = 103 and |W | = 105 tuples with
the respective step size growing from |w| = |W |/64

⇠
= 16 to |w| = |W |/64

⇠
= 1600

tuples. Thus, in total, we feed the system |W | + 100 ⇤ |w| ⇠
= 2600 tuples in the

most lightweight case and with |W | + 100 ⇤ |w| ⇠
= 260000 tuples in the most

demanding case.
Previous experiments demonstrated purely the query processing performance.

Here, we test the complete software stack of DataCell, i.e., data is read from an
input file in chunks. It is parsed and then it is passed into the system for query
processing. The input file is organized in rows, i.e., a typical csv file. Data-
Cell has to parse the file and load the proper column/baskets for each batch.
Similarly for SystemX. For all systems, we made sure that there is no extra
overhead due to tuple delays, i.e., the system never starves waiting for tuples,
representing the best possible behavior.

Figure 5.13 shows the results. It is broken down into Figure 5.13(a) for
small windows, i.e., smaller than 104 tuples and into Figure 5.13(b) for bigger
windows. For very small window sizes, we observe that plain DataCell gives
excellent results, even outperforming the stream solutions in the smaller sizes.
The amount of data to be processed is so small that simply the overhead involved
around the incremental logic in a stream implementation becomes visible and
decreases performance. This holds for both DataCell

I

and SystemX, with the
latter having a slight edge for the very small sizes.

Response times though are practically the same for all systems as they are
very small anyway. However, as the window and step size grow, we observe a
very di↵erent behavior. In Figure 5.13(b), we see that plain DataCell is losing
ground to DataCell

I

. This time, the amount of data and thus computation
needed becomes more and more significant. The straight-forward implementa-
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tion of stream processing in a DBMS cannot exploit past computation leading
to large total costs. In addition, we see another trend; DataCell scales nicely
with the window size and now becomes the fastest system.

SystemX fails to keep up with DataCell

I

and even plain DataCell. When
going for large amounts of data and large windows, batch processing as exploited
in DataCell

I

, gains a significant performance gain over the typical one tuple at
a time processing of specialized engines. The main reason is that we amortize
the continuous query processing costs over a large number of tuples as opposed
to a single one. In addition, the incremental logic overhead is moved up to the
query plan as opposed to each single operator.

Modern trends in data warehousing and stream processing support this mo-
tivation (Winter and Kostamaa, 2010) where continuous queries need to handle
huge amounts of data, e.g., in the order of Terabytes while the current litera-
ture on stream processing studies only small amounts of data, i.e., 10 or 100
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tuples per window in which case tuple at a time processing behaves indeed well.
An interesting direction is hybrid systems, i.e., provide both low-level incre-
mental processing as current stream engines and high level as we do here, and
interchange between di↵erent paradigms depending on the environment.

Finally, Figure 5.14 breaks down the DataCell

I

costs seen in the previous
figure into pure query processing costs and loading costs, i.e., the costs spent in
parsing and loading the input file. We see that query processing is the major
component while loading represents only a minor fraction of the total cost.

5.7 Conclusions

In this chapter, we have shown that incremental continuous query processing can
e�ciently and elegantly be supported over an extensible DBMS kernel. These
results open the road for scalable data processing that combines both stored and
streaming data in an integrated environment in modern data warehouses. This
is a topic with strong interest over the last few years and with a great potential
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impact on data management, in particular for business intelligence and science.
Building over an existing modern DBMS kernel to benefit from existing scalable
processing components, continuous query support is the missing link. Here, we
study in this context one of the most critical problems in continuous query
processing, i.e., window based incremental processing.

Essentially, incremental processing is designed and implemented at the query
plan level allowing to fully reuse (a) the underlying generic storage and execution
engine and (b) the complete optimizer module. In comparison with a state-of-
the-art commercial DSMS, DataCell achieves similar performance with small
amounts of data, but quickly gains a significant advantage with growing data
volumes, bringing database-like scalability to stream processing.

The following chapter concludes the thesis and discusses a number of inter-
esting open topics and research directions towards a complete data management
architecture that integrates database and stream functionalities in the same ker-
nel. DataCell opens the road for an exciting research path by looking at the
stream query processing issue from a di↵erent perspective and by taking into
account the needs of modern data management applications for scalable stream
processing combined with traditional query processing. The range of topics dis-
cussed in this chapter include multi-query processing, adaptive query processing,
query relaxation, distributed processing, and realizing DataCell in alternative
architectures.
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Chapter 6

Conclusions and Future
Research Paths⇤

In this thesis, we set the roots for a novel data management architecture that
naturally integrates database and stream query processing inside the same query
engine. As we discussed in the beginning of the thesis, there is a large demand
nowadays to combine e�cient and scalable stream and one-time processing. We
start with a modern column-store architecture, realized in the MonetDB system,
and we design our new system in this kernel. Column-store architectures o↵er
the requirement for e�cient one time processing and our main contribution here
is the design of a column-store system that can do both stream and one-time
processing e�ciently.

The reason to choose this research direction comes from today’s application
requirements to support both processing models providing advanced processing
in both cases. So far the research community used to deal with this scenario in
two ways. The first way is by trying to build specialized stream systems that in
addition to stream processing provide simple processing of persistent/historical
data. However, in this case, we are not able to reach the sophisticated tech-
niques of mature database systems, especially when we need to support complex
queries and/or big data analysis. An alternative direction is to externally con-

⇤Part of the material in this chapter has been presented at VLDB11 PhD Workshop paper
“DataCell: Building a Data Stream Engine on top of a Relational Database Kernel.” (Liarou
and Kersten, 2009) and at the PVLDB11 paper “The Researcher’s Guide to the Data Deluge:
Querying a Scientific Database in Just a Few Seconds” (Kersten et al., 2011).

141
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nect and synchronize under the same middleware two specialized processing
engines, i.e., a separate data stream engine and a separate DBMS, assigning
di↵erent processing tasks to each one of them. The vision of an integrated pro-
cessing model, has been considered in the past in the context of active databases
and database triggers. However, it was soon rejected once the requirements of
streaming applications became demanding for near real-time processing, multi-
query optimizations and adaptive query processing; these are concepts that at
this moment were new and di↵erent from the ones of the original database sce-
narios. In this thesis, we reconsider the path to implant on-line capabilities
within a modern column-store database kernel in a way that we can e�ciently
synthesize and support interesting scenarios with streaming and database func-
tionalities. In the DataCell project we exploit, reuse, redirect and extend the
useful parts that the existing database technology already o↵ers, to support a
more complete query processing scenario, where the need of active and passive
processing co-exist.

In this chapter, we will discuss and summarize our contributions to this
research direction. We will also discuss a number of interesting future research
topics towards scalable and e�cient stream and one-time query systems, e.g.,
multi-query processing, adaptive query processing, query relaxation, distributed
processing, etc.

6.1 Contributions

Basic DataCell Architecture

In this thesis, we introduced the basic DataCell architecture to exploit the notion
of scalable systems that can provide both streaming and database functionality.
We first showed the minimal additions that allow for stream processing within
a DBMS kernel. The unique goal of DataCell is to exploit, as much as possi-
ble, all the available infrastructure o↵ered by the underlying database kernel.
In this way, we built our system using the majority of the original relational
operators and optimization techniques, elevating the streaming functionality
mainly at the query plan and scheduling level. The first DataCell architecture
(Chapter 3) resulted in a model that allows to repeatedly run queries over in-
coming data as new data continuously arrives. Already this model was shown
to provide substantially good streaming performance mainly by exploiting the
power of modern column-store architectures. We were able to run the complete
Linear Road benchmark and be well within the timing requirements set in the
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benchmark (see Section 3.5.2).

Incremental Processing

With the basic DataCell architecture at hand, the next step was to work on ma-
jor stream functionalities. The topic we dealt with was incremental processing;
this is necessary in order to be able to e�ciently support window continuous
queries over streaming data. Most relational operators underlying traditional
DBMSs cannot operate incrementally without a major overhaul of their imple-
mentation. Here, we show that e�cient incremental stream processing is pos-
sible in a DBMS kernel handling the problem at the query plan and scheduling
level. For this to be realized, the relational query plans are transformed in such
a way that the stream of data is continuously broken into pieces and di↵erent
portions of the plan are assigned to di↵erent portions of the focus window data.
DataCell takes care that this “partitioning” happens in such a way that we can
exploit past computation during future windows. We illustrated the methods to
extend a modern column-store with the ability to create and rewrite incremen-
tal query plans. The end result was e�cient and crucially scalable incremental
processing. As we show in this thesis, DataCell with incremental processing
available can be much faster and scalable than a state of the art commercial
stream system (Chapter 5).

6.2 Looking Ahead

In this thesis, we made the first steps towards a complete data management
architecture that integrates database and data stream functionalities in the same
kernel. DataCell fundamentally changes the way that stream data is handled
and processed, trying to exploit many traditionally core database techniques
and ideas.

In this way, DataCell brings a significantly di↵erent view on how to build
stream systems and radically changes the way we process data streams. Thus, it
also brings the need to reconsider several of the well established techniques in the
stream processing area. The road-map for DataCell research calls for innovation
in many important stream processing areas. In the rest of this section, we will
touch on these topics and where possible we will also provide discussion on
possible research paths for solving these problems in the DataCell context.
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6.2.1 Multi-Query Processing

A critical issue is that of multi-query processing and the rich scheduling op-
portunities that control the interaction between multiple continuous queries.
In traditional stream processing, this area has received a lot of attention with
several innovative solutions, e.g., (Sharaf et al., 2008). DataCell o↵ers all the
available ingredients to achieve similar levels of multi-query optimizations, while
keeping the underlying generic engine intact. Below we discuss some of these
directions.

Splitting and Merging Factories

Exploiting similarities at the query and data level is necessary in order to
meet the real-time deadlines a stream application sets. In this way, we need
to study mechanisms to e�ciently and dynamically organize the queries in mul-
tiple groups based on their needs and properties. To accommodate partially
overlapping queries we also need mechanisms to dynamically split and merge
factories that wrap the query plans or parts of them.

DataCell here can adopt part of the existing literature in multi-query pro-
cessing but there is also room to investigate research opportunities that arise
from the basic DataCell processing model. One of the main innovations in Data-
Cell comes from the choice to elevate several of the stream functionalities at the
query plan and scheduling level. This allows for e�cient reuse of core database
functionalities and optimizations. In this way, one of the most challenging di-
rections for multi-query processing in DataCell is the choice to split the plan
of a single query into multiple factories. The motivation for this comes from
di↵erent angles. For example, each factory in a group of factories sharing a
basket, conceptually releases the basket content only after it has completed all
operators in its query plan. Assume two query plans; a lightweight query q1 and
a heavy query q2 that needs a considerably longer processing time compared to
q1. With the shared baskets strategy (see Section 3.3.2), we force q1 to wait
until q2 finishes before we allow the receptor to place more tuples in the shared
basket such that q1 can run again. A simple solution is to split a query plan into
multiple parts, such that part of the input can be released as soon as possible,
e↵ectively eliminating the need for a fast query to wait for a slow one.

Another natural direction once we decide to split query plans into multiple
factories, is the possibility to share both the baskets and the execution cost.
For example, queries requiring similar ranges in selection operators can be sup-
ported by shared factories that give output to more than one query’s factories.
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Auxiliary factories can be plugged in to cover overlapping requirements.

DataCell Cracking

Another interesting direction for multi-query processing in DataCell is to exploit
the idea of database cracking (Idreos, 2010). Database cracking was proposed
as an adaptive indexing technique in the context of column-stores with bulk
processing. The idea is that data is continuously physically reorganized building
indexes incrementally and adaptively based on the requests of incoming queries.
DataCell scheduling can exploit such ideas by allowing similar queries to run over
the same baskets in a particular order. These queries can then use cracking-like
ideas to continuously reorganize the basket and thus allowing successive queries
to operate faster and faster for a given batch of incoming tuples. Challenges
here include the dynamic scheduling of queries, i.e., which queries to allow to
crack which baskets and in which order. Cracking is very sensitive in the order
we process queries as this a↵ects the kind of clustering and thus optimization
achieved. Other challenges include finding a good balance between investment
and amortization of the investment as in normal databases any index built can
be exploited “forever”, while in our case the cracked baskets will only be useful
for a given window of time.

6.2.2 Adaptation

Adaptive query processing is another very important issue in data streams. Dy-
namic changes to the arrival rate of data streams and on correlations between
the incoming data, drastically a↵ect the computation value of the continuously
executed operations. In addition, new continuous queries are submitted over
time while some of the old ones may expire and this changes the overall query
processing behavior of the system. In this context, static query optimizations
made up-front may not be valid after some time. Below we discuss some inter-
esting directions for DataCell in this context.

Adaptive Behavior in Traditional Streams

Many academic prototypes presented extensive work on this topic. For example,
StreaMon (Babu and Widom, 2004), the adaptive query processing infrastruc-
ture of STREAM (Arasu et al., 2003), collects statistics about stream and query
plan characteristics and takes the appropriate actions to always ensure that the
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query plan and memory usage are optimal for the current input characteris-
tics. TelegraphCQ (Chandrasekaran et al., 2003) constructs query plans with
adaptive routing modules, called Eddies (Avnur and Hellerstein, 2000). Thus,
it is able to proceed to continuous run-time optimizations, dynamically adapt-
ing to the workload. Eddies modules adaptively decide how to route data to
appropriate query operators on a tuple-by-tuple basis.

Adaptive Behavior in DataCell

Several key steps in the DataCell architecture are already adaptive in nature.
Once a query is submitted in DataCell, it is parsed, compiled, optimized and
then ends up to the pool with the other continuous queries, waiting to start
processing incoming stream tuples. We first see an adaptive behavior when
a factory considers how to proceed to the processing of the incoming chunk
of data. It dynamically decides which way to evaluate the query, choosing
between incremental processing and the re-evaluation method. As we have seen,
window queries in periods with a low rate of incoming tuples can by default be
executed according to the re-evaluation model. Once the arrival rate of the data
streams becomes extremely high or bursty, the factory proceeds to a dynamic
self-adaptive solution to find the optimal chunk size and proceed to incremental
processing of the partial chunks.

By default DataCell starts with full re-evaluation, considering that the pro-
cessing chunk is the same as the window size. Then, we successively modify the
chunk size monitoring the response time for a couple of sliding steps. As long
as the response times decrease by increasing the number of chunks in a window,
we keep increasing this number. Only once the increasing merging overhead
out-weights the decreasing processing costs, the response times increase, again.
Then, we stop increasing the number of chunks and reset it to the value that
resulted in the minimum response time.

Adaptive DataCell Query Plans

Most of the past work on adaptive query processing in stream systems naturally
focuses on adaptive query plans, i.e., choosing di↵erent plan configurations for
a given query depending on changes in the environment, the system, the data
and the queries. The adaptive features discussed for DataCell above are mainly
at a di↵erent level that has to do with the administration of the system and the
resources.
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However, there is plenty of room for more optimization by considering adap-
tation at the query plan level too that goes beyond the choice of re-evaluation
and incremental evaluation. For example, choosing di↵erent shape of query
plans depending also on multi-query processing issues can be of crucial impor-
tance. Thus, again the choice of how to organize factories, how to dynamically
split and merge query plans depending on the changes of the environment be-
comes an important issue.

At this point we should mention that given the modern column-store roots
of DataCell, we already exploit some adaptive optimization at run time. Even if
the query plan is static and optimized only once, at the submission time of the
query, the operators are evaluated in a dynamic way. Given the bulk processing
model, each operator knows exactly what is its input at execution time. For
example, before executing a join we have first collected all tuples from both join
inputs which means that we know their size, properties such as cardinality and
possibly other data quality properties that allow us to dynamically decide the
proper join algorithm.

However, full re-optimization and full adaptive query processing that allow
the system to quickly adapt and continuously match the workload is a manda-
tory feature of modern stream engines. Here DataCell research can exploit ideas
such as dynamic sampling and possible re-optimization if initial choices seem
wrong, etc.

6.2.3 Dualism

In the DataCell context we have challenges that arise by combining the two
query processing paradigms in one. More and more applications require this
functionality and we can naturally expect that this will become a more main-
stream processing model in the coming years. For example, this applies to
scientific databases as well as in social networks where new data continuously
arrives and needs to be combined with past data.

Once the technology of merging both continuous and one-time query process-
ing becomes more mature, we expect a plethora of rich topics to arise especially
when optimization becomes an issue. For example, query plans that touch both
streaming data and regular tables might require new optimizer rules or adapta-
tions of the current ones. There, all the choices made in respect to optimizing
single continuous or one-time queries need reconsideration. Similarly for multi-
query processing. Overall, DataCell opens the road for an exciting research path
by looking at the stream query processing issue from a di↵erent perspective.
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6.2.4 Query Relaxation

Pure stream systems traditionally focus on small scale applications with a rather
small rate of incoming data. Nowadays, though, the requirements are changing
towards systems that should be able to handle data streams of Terabytes on
a daily basis. For example, scientific databases and large corporate databases
create a huge pile of new data each day and need to run the same queries
over and over again, combine past data with new ones and so on (Winter and
Kostamaa, 2010).

Typical stream systems are not designed with such workloads in mind. With
DataCell we make a significant step towards scalable stream processing by ex-
ploiting modern column-store features such as bulk processing and vectorized
processing. However, as the data grows even more and in order to support
new kinds of applications such as scientific databases we need to rethink certain
query processing assumptions. For example, complete answers are often not
possible due to the limited resources given the workload. Furthermore, the ex-
ploration and comprehension of data streams with a very high rate of incoming
data, may lead to fundamentally di↵erent processing models.

In light of these challenges, we should rethink some of the strict require-
ments data stream systems adopted in the past. Next generation data stream
management systems should interpret queries by their intent, rather than as a
contract carved in stone for complete and correct answers. The continuously
generated result sets should aid the user in understanding the stream trends
and provide guidance to continue his data exploration journey as long as the
stream is coming and his requirements are possibly modified. The stream engine
would ideally interact with the users and help them continuously explore the
streaming data in a contextualized way. In the rest of this subsection, we will
discuss two possible directions towards more relaxed stream processing.

Approximate Kernels

One of the prime impediments to fast data exploration is the query execution
focus on correct and complete result sets, i.e., the semantics of SQL presupposes
that the user knows exactly what he expects and needs to monitor. The de-
sign and implementation of the query optimizer, execution engine, and storage
engine are focused towards this goal. That is, correctness and completeness
are first class citizens in modern data stream kernels. This means that when
the system needs to perform a few hard and expensive unavoidable steps, it is
designed to perform them such that it can produce the complete and correct re-
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sults. However, the query accuracy may have a significant impact on the query
processing time that potentially will lead to deadline violations.

With input data sizes growing continuously, the research path of query ap-
proximation, was born such as to cope with the demanding short response times
in stream applications. With huge data sizes that cannot be processed in a rea-
sonable time load shedding has been widely adopted by the stream community
as the most natural approach (Tatbul, 2007). There, we skip processing the
whole input (e.g., by dropping tuples or creating tuple summarizations) aiming
to save processing resources, even if this action will drastically a↵ect our query
answers. If the user accidentally chooses an expensive monitoring condition that
produces a large result set, then a sample might be more informative and more
feasible. Unfortunately, such a sample depends on the data distribution, the
correlations, and data clustering in the data stream and the query result set.
Taking a sample can still cause significant performance degradation that surface
only at run time.

Current approximation techniques have only been studied for simple and
small scale scenarios. Sampling and load shedding allow to drop part of the
workload by completely ignoring certain incoming tuples. Summarization tech-
niques create summaries over the data allowing to query the smaller summary
and get a quick approximate response. For scientific databases though, even
creating such summaries on the daily stream of Terabytes becomes a challenge
on its own. Specifically, in stream processing it may not be worth creating
summaries for small windows of data.

The above techniques require either a significant preprocessing step which
can be prohibitive in large scale data or a strict up-front isolation of certain
input parts. Here, we scrabble a novel direction where approximation becomes
the responsibility of individual operators allowing a query processing kernel to
self-organize and decide on-the-fly how to better exploit a given resource budget.
For example, a hash-join may decide not to prompt the hash table for a given
set of the inner, or after hitting a bucket where it has to follow a long list it
may decide to skip this tuple of the inner.

The idea is to address the problem at its root; we envision a kernel that
has rapid reactions on user’s requests. Such a kernel di↵ers from conventional
kernels by trying to identify and avoid performance degradation points on-the-
fly and to answer part of the query within strict time bounds, but also without
changing the query focus. Its execution plan should be organized such that a
(non-empty) answer can be produced within T seconds.

Although such a plan has a lot in common with a plan produced by a con-
ventional cost-based optimizer, it may di↵er in execution order, it may not let
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all operators run to completion, or it may even need new kinds of operators. In
other words, an approximate kernel sacrifices correctness and completeness for
performance. The goal is to provide a quick and fully interactive gateway to the
data until the user has formulated a clear view of what he is really searching
for, i.e., it is meant as the first part of the exploration process.

At this point note that the stream world has already sacrificed completeness
and correctness when the window processing model was introduced in order to
bound the infinite inputs. However, this has the same e↵ect as with sampling
and it cannot always guarantee good performance as the quality of the data
may force expensive operations.

For example, very often during a plan we need to sort large sets of rowIDs
to guarantee sequential data access. Those can be replaced by a cheaper clus-
tering method or we can refrain from data access outside the cache. Like-
wise, operations dealing with building auxiliary structures over the complete
columns/tables, can be broken up into their piecewise construction. Building
just enough within T to make progress in finding an answer. If T is really
short, e.g., a few seconds, the plan may actually be driven from what is already
cached in the memory bu↵ers. In a modern server, it is just too expensive to
free up several Gigabytes of dirty memory bu↵ers before a new query can start.
Instead, its memory content should be used in the most e↵ective way. In the re-
maining time the memory (bu↵er) content can be selectively replaced by cheap,
yet promising, blocks. With a time budget for processing, the execution engine
might either freeze individual operators when the budget has been depleted, or
it might replace expensive algorithms with approximate or cheaper alternatives.

These ideas extend from high level design choices in operators and algorithms
all the way to lower level (hardware conscious) implementation details. For
example, during any algorithm if we reach the case where we need to extend,
say, an array in a column-store with a realloc, an algorithm in that kernel may
choose to skip this step if it will cause a complete copy of the original array.

This sketch is just the tip of the iceberg, i.e., numerous examples and vari-
ations can be conceived. The key challenge is to design a system architecture
where budget distribution can be dynamically steered in such a way that the
query still produces an informative result set. Aside from a tedious large-scale
(re-)engineering e↵ort to build a kernel on this assumption, major research ques-
tions arise. For example:

• How is the budget spread over the individual operators?

• What actions are operators allowed to take to stay within the budget?
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• How to harvest the system state produced by previous queries?

• How to replace the relational operators and index constructors with in-
cremental versions?

• What all this means for dynamic and continuous adaptation of stream
plans?

• How do such ideas combine with multi-query processing ideas in streaming
environments?

At first sight the above ideas do not fit with the initial goal of DataCell
to use existing and optimized database operators in order to exploit mature
database technology. However, as we discussed in this section, the requirements
of radically new applications such as scientific databases and social networks
go way beyond what current technology can support which implies that drastic
changes are required. Ideas such as the one discussed above apply both to
traditional databases and to stream processing. For example, in the context of
the DataCell the basic architecture could remain the same while the underlying
core operators are updated to their approximate alternatives.

Query Morphing

In the same spirit as with the approximate kernels ideas presented above, we
can also extend the ideas of approximate query processing to the actual patterns
of the queries posed by the user. In this paragraph, we scrabble the vision
where a stream processing kernel participates more actively in the complete
query processing experience of the user, o↵ering an additional mechanism that
provides query pattern suggestions. According to the standard way a DSMS
works, a user should first have a general clear idea of what to expect from
the incoming data stream and then formulate and submit the corresponding
continuous queries. However, when we are dealing with streams with high rates
of incoming tuples, and our perspective on incoming data is not still clear or
may be drastically modified depending on dynamic conditions, we could end
up “missing” valuable stream data and wasting resources on analysis that ends
up not being useful. For example, this can easily happen when our original
continuous queries are not representative enough, of what we really wanted to
monitor giving zero-hit or mega-hit result sets. This phenomenon is typical in
exploratory scenarios such as scientific databases. Expensive query processing,
in conjunction with the rapidly incoming data steams, trigger the vision for a
data stream kernel that becomes a query consultant.



152 CHAPTER 6. CONCLUSIONS

Figure 6.1: Query Morphing

We introduce the notion of query morphing as an integral part of query
evaluation. It works as follows, the user gives a starting query Q and most of
the e↵ort T is spent on finding the “best” answer for Q. But a small portion is
set aside for the following exploratory step. The query is syntactically adjusted
to create variations Q

i

, i.e., with a small edit distance from Q. The process of
query morphing is visualized on the left part of Figure 6.1. The user’s original
request for a window stream returns the result set depicted by the small red
circle. However, the processing kernel grabs the chance to explore a wider
query/data spectrum in parallel, providing additional results for queries that
belong in the close area, surrounding the original continuous query. The arrows
that start from the red circle indicate this edit area in our example. In this
way, the user also receives the orange elliptic query results that correspond
to variations of his original request. In the right part of above figure, we see
that the user may as a next step decide to shift his interest towards another
query result, inspired by the result variations. A new query area now surrounds
the user’s request, including both past and new variations of the query. This
feature is very useful, once the user wants to monitor the incoming stream in
a wider range and not stuck to his original request. This is not a one-time
processes, as long as the input stream flows di↵erent trends could be identified
in a continuously modified context.

Several kinds of adjustments can be considered to create the query varia-
tions, e.g., addition/dropping of predicate terms, varying constants, widening
constants into ranges, joining with auxiliary tables through foreign key relation-
ships, etc. The kind of adjustments can be statistically driven from the original
submitted continuous queries, combinations of queries submitted by di↵erent
source, or cached (intermediate partial) results. Since we have already spent
part of our time on processing Q, the intermediates produced along the way can
also help to achieve cheap evaluation of Q

i

.



6.3. DISTRIBUTED STREAM PROCESSING 153

Of course, another crucial topic here is how this relates with the continuous
adaptation nature that a stream system should have, i.e., how these exploratory
query suggestions fit within the grand picture of continuously optimizing stream
performance as the environment changes. Similarly, for multi-query processing
there are opportunities to grab suggestions by exploiting multiple existing con-
tinuous queries and essentially transferring knowledge from one query pattern to
the next. In other words, we can use the network of queries in order to provide
suggestions about interesting queries or result sets.

The approach sketched aligns to proximity-based query processing, but it is
generalized to be driven by the query edit distance in combination with statis-
tics and re-use of intermediates. Query morphing can be realized with major
adjustments to the query optimizer, because it is the single place where normal-
ized edit distances can be easily applied. It can also use the plan generated for
Q to derive the morphed ones. The ultimate goal would be that morphing the
query pulls it in a direction where information is available at low cost. In the
ideal case, it becomes even possible to spend all time T on morphed queries.

6.3 Distributed Stream Processing

With data volumes continuously growing, there is a pressing need to look into
scalable query processing. The approximate query processing ideas described in
the previous section, are a step in this direction.

However, there are more options to consider. For example, distributed query
processing has always represented a good approach in supporting bigger data
and query loads for any data management system. For example, some academic
prototypes, e.g., Borealis (Abadi et al., 2005), and commercial systems, e.g.,
(Gedik et al., 2008), have focused on this topic. Many of the ideas that have
been already proposed for distributed stream processing can also be applied in
our context. The stream engine of DataCell can become the central processing
part of each node and issues related to how we should distribute the data and
the queries, to coordination, to communication protocols, and to fault tolerance
can be handled in at a higher level, i.e., the core of the DataCell does not have
to change.
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6.4 DataCell in Di↵erent Database Kernels

The DataCell architecture is designed over modern column-store architectures.
This fact raises a valid and at the same time important question whether our
ultimate vision to include e�cient stream processing in the heart of a traditional
DBMS is limited to the underlying column-store architecture. The questions we
should answer here are the following.

• Can we apply the same ideas on top of a row-store DBMS?

• How critical and unique are the column-store architecture advantages
which enable DataCell?

In the basic DataCell architecture, each query is encapsulated into a fac-
tory, i.e., a function that wraps a continuous query plan in an infinite loop.
Streaming data is temporarily collected into baskets and remains there until its
consumption by the connected factories/operators. Baskets and tables can har-
moniously co-exist and interact, while the optimization algorithms are applied
with minimal changes to both one-time and continuous queries. Note, that the
purely stream specialized optimizations, i.e., incremental processing, are only
applied to the corresponding queries.

The DataCell philosophy as briefly summarized above seems that could eas-
ily be applied in a row-store architecture, too. The existence of an intermediate
scheduler, that orchestrates the waiting factories flourished by e�cient schedul-
ing polices, should certainly be implanted within the database software stack.
The parser should be extended in a way to understand and di↵erentiate the
streaming from the persistent data, and the di↵erent query types. Thus, trans-
forming a passive data management system to an active one, seems a general
method that consists of a few straightforward key steps, and can easily be ap-
plied to any extensible system.

However, one of the main di↵erence between DataCell’s underlying column-
store kernel with other relational row-oriented DBMSs, is the core processing
model that they obey. DataCell builds over a column-store kernel using, bulk
processing instead of volcano-style pipelining execution model and vectorized
query processing as opposed to tuple-based. It relies on operator-at-a-time
bulk processing and materialization of all (narrow) intermediate result columns.
DataCell adopts the column-at-a-time processing principle, adapting it to the
streaming singularity. Thus, without waiting “forever” to fill in the (streaming
attributes) columns with streaming data, it gets as many data are available into
chunks when the triggering condition occurs and evaluates the query plans, in
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a Volcano-style iteration. This logic, is quite di↵erent than the original tuple-
at-a-time model where the individual operations are invoked separately for each
tuple. However, this fundamental di↵erence is not a prohibitive factor to pro-
ceed to the streaming transformation of a row-oriented DBMS; all we need is
to simply be able to materialize intermediates for incremental processing and
introduce a mechanism for batch processing.

The tuple-at-a-time model guarantees near real-time processing in a typical
stream application; it immediately processes each tuple once it arrives. However,
there is a drawback coming from the need to repeatedly call all operators. This
can potentially a↵ect scalability.

Our underlying column-store architecture constitutes a crucial feature to
support DataCell’s incremental processing requirement. Intermediates are also
in column format. In this way, we did not need to change to original rela-
tional operators, since we keep in a natural way the required intermediate
state of the partial operator evaluation into the corresponding intermediate
columns/baskets inside each factory. The operators access only the newly ap-
pended streaming data and they merge the new results with the previous ones
to update the result set. The key point is to be able to split the stream and
then “freeze” and “resume” execution of a plan at the proper points.

Hence in a row-store implementation, the major extension required is to
introduce intermediate result materialization for each operator that precedes a
concat operation in the incremental plans. While this used to be considered
an unbearable overhead, row-stores implement similar techniques for sharing
intermediate results for multi-query optimization, and recently we have seen
successful exploitation of intermediates in eddies (Deshpande and Hellerstein,
2004).

Other than design issues, using column-store or row-store as the underlying
architecture comes with all the benefits or the overheads of the respective design.
Row-stores and column-stores clearly represent the extremes of the database ker-
nel architecture design space. For example, depending on the workload there
may be less I/O and memory bandwidth requirements for a column-store but
at the same time a row-store may have less requirements for intermediates ma-
terialization and thus less memory requirements. As such, another interesting
direction for DataCell is the application of the DataCell philosophy in the more
recent e↵orts that try to build hybrid database architectures. Again, the fea-
tures of bulk processing, selective intermediates materialization and the ability
to pause and resume execution, are all necessary for the core DataCell function-
ality.
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6.5 Summary

DataCell makes the first steps towards a complete data management architec-
ture that integrates database and stream functionalities in the same kernel. It
fundamentally changes the way that stream data is handled and processed, try-
ing to exploit many traditionally core database techniques and ideas. In this
thesis, we made the strong statement that it is possible to implant stream pro-
cessing functionalities in the heart of a modern database kernel and achieve both
state of the art one-time query performance and stream query performance.

By relying on previous major e↵orts made from the database community
during the last decades, we can bring several advantages on the stream process-
ing front. So far, we made the first crucial steps to this direction. However,
plenty of research challenges arise. The various open topics described in this
chapter show the research path towards a fully integrated architecture where
complex and hybrid stream-database scenarios will be expressed and performed.
Overall, DataCell opens the road for an exciting research path by looking at the
stream query processing issue from a di↵erent perspective and by taking into
account the needs of modern data management for scalable stream processing
combined with traditional query processing.
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Summary

Numerous applications nowadays require online analytics over high rate stream-
ing data. For example, emerging applications over mobile data can exploit the
big mobile data streams for advertising and tra�c control. In addition, the
recent and continuously expanding massive cloud infrastructures require contin-
uous monitoring to remain in good state and prevent fraud attacks. Similarly,
scientific databases create data at massive rates daily or even hourly. In addi-
tion, web log analysis requires fast analysis of big streaming data for decision
support.

The need to handle queries that remain active for a long time (continuous
queries) and quickly analyze big data that are coming in a streaming mode
and combine it with existing data brings a new processing paradigm that can
not be exclusively handled by the existing database or data stream technology.
Database systems do not have support for continuous query processing, while
data stream systems are not built to scale for big data analysis. For this new
problem we need to combine the best of both worlds.

In this thesis, we study how to design and implant streaming functionalities
in modern column-stores which targets big data analytics. In particular, we
use the open source column-store, MonetDB, as our design and experimenta-
tion platform. This includes exploitation of both the storage/execution engine
and the optimizer infrastructure of the underlying DBMS. We investigate the
opportunities and challenges that arise with such a direction and we show that
it carries significant advantages. The major challenge then becomes the e�-
cient support for specialized stream features such as incremental window-based
processing as well as exploiting standard DBMS functionalities in a streaming
environment.

We demonstrate that the resulting system, MonetDB/DataCell, achieves ex-
cellent stream processing performance by gracefully handling the state of the
art stream benchmark, the Linear Road Benchmark. In addition, we demon-
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strate that MonetDB/DataCell outperforms state of the art commercial stream
management systems as the stream data increase. These results open the road
for scalable data processing that combines both persistent and streaming data
in an integrated environment in modern data warehouses.



Samenvatting

Vandaag de dag moeten online analytische programmas kunnen omgaan met
een snelle stroom van gegevens. Bijvoorbeeld, toepassingen in de mobiele sector
proberen de stroom van gegevens te gebruiken voor advertenties en routering. In
dezelfde lijn vereisen grootschalige Cloud infrastructuren een continue monitor-
ing om stabiliteit te waarborgen en cyberaanvallen te kunnen pareren. Weten-
schappelijk databanken en web-log analyses vereisen een e�ciente verwerking
voor decision support.

Het afhandelen van langlevende queries (continuous queries) en het snel anal-
yseren van grote data stromen in combinatie en vergelijking met reeds opges-
lagen informatie kan nog niet goed met de bestaande database en streaming
technologie worden uitgevoerd. Database systemen missen de functionaliteit
voor verwerking van continuous queries en data streaming systemen schalen
niet. Dit nieuwe probleem vereist een oplossing die de beste eigenschappen van
beide werelden combineert.

In dit proefschrift wordt een ontwerp besproken hoe data stromen kunnen
worden verwerkt in een modern kolom-georienteerde database systeem. In het
bijzonder richten we ons hier op het open-source systeem MonetDB als platform
voor ontwerp experimentatie. Het omvat aanpassingen in zowel het opslag deel,
de verwerkingskern, als ook de optimizers. De mogelijkheden worden op een
rij gezet en geanalyseerd om de beste richting te kunnen bepalen. De grootste
winst wordt gehaald bij ’window-based’ verwerking van de data stroom.

We laten aan de hand van de Linear Road Benchmark zien dat het proto-
type een uitstekende performance biedt en ook in vergelijking met state-of-the-
art commerciele systemen. Deze resultaten maken het mogelijk om schaalbare
gegevensverwerking te verkrijgen voor zowel stromende als persistente gegevens
in een geintegreerde, moderne datawarehouse omgeving.
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