MonetDB/DataCell

leveraging the Column-store
Database Technology

for

Efficient and Scalable
Stream Processing

Erietta Liarou

MonetDB/DataCell:
Leveraging the Column-store
Database Technology

for Efficient and Scalable Stream
Processing

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom
ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Agnietenkapel

op dinsdag 22 januari 2013, te 14:00 uur

door Erietta Liarou

geboren te Athene, Griekenland

Promotiecommissie

Promotor: Prof. dr. M.L. Kersten
Copromotor: Dr. S. Manegold
Overige Leden: Prof. dr. M. de Rijke

Prof. dr. L. Hardman
Prof. dr. M. Koubarakis
Prof. dr. M. T. Ozsu

Faculteit der Natuurwetenschapen, Wiskunde en Informatica

The research reported in this thesis has been partially carried out at CWI, the
Dutch National Research Laboratory for Mathematics and Computer Science,
within the theme Database Architectures and Information Access, a subdivision
of the research cluster Information Systems.

mone@

The research reported in this thesis has been partially carried out as part of the
continuous research and development of the MonetDB open-source database
management system.

sTIKS

SIKS Dissertation Series No 2013-02.

The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.
The research reported in this thesis was partially funded by the BRICKS project.

ISBN 978-90-6196-562-6

H I8ikn o’ édwoe T’ wpaio ta&idn
Xwpis avtriy dev Ga Byawes otov dpduo.
AMa dev éxer va o€ ddoer ma.

K av trwxaxr) tny Bpels, n [0dkn dev o€ yélaoe.
Ero1 009 Tov éyves, ue téon meipa,
16n da to kardlaPes o1 I9dkes T1 onuaivour.

K.II. KaBdens

Ithaka gave you the marvelous journey.
Without her you would not have set out.
She has nothing left to give you now.

And if you find her poor, Ithaka won’t have fooled you.
Wise as you will have become, so full of experience,
you will have understood by then what these Ithakas
mean.

C.P. Cavafy (1865-1953)

Contents

1 Introduction
From the Theory of Forms to the Knowledge Boom
Data Management

2

1.1
1.2

1.3

1.4

1.2.1

Database Management Systems

Data Stream Management

DSMSvs. DBMS.

The DataCell: a DSMS into the heart of a DBMS

1.4.1
1.4.2
1.4.3
144
1.4.5

Motivation
The Basics
Research Challenges
Contributions
Published Papers

1.5 Thesis Outline e

Background and Related Work
2.1 First Steps towards Real-time Processing

2.2
2.3
24

2.1.1
2.1.2

2.1.3

Triggers o
Active Databases L.
Alert e
DataCell vs Active Databases and Triggers

Real-time Databases
Publish-Subscribe Systems
The New Era of Data Stream Management Systems

2.4.1
2.4.2
2.4.3
244

Aurora.
STREAM (STanford stREam datA Management)
Telegraph-CQ
Other Data Stream Management Systems

7

CONTENTS

2.4.5 DataCell vs Traditional Data Stream Architectures 42

2.5 A new Stream Processing Paradigm 44
2.6 Data Stream Query Languages 46
Declarative 46

Procedural L. 47

2.7 The MonetDB System, 47
Row-store vs. Column-store architecture 47

The MonetDB Storage Model 48

The MonetDB Execution Model 49

The MonetDB Software Stack 51

2.8 SUMIMATY . . .« v v v e e e e e 52
DataCell Architecture 55
3.1 Imtroduction 55
3.1.1 Challenges and Contributions 56
3.1.2 Outline 57

3.2 The DataCell Architecture. 57
3.2.1 Receptors and Emitters 57
3.2.2 Baskets 58
3.2.3 Factories 61

3.3 Query Processing oo o 64
3.3.1 The DataCell Processing Model 64
3.3.2 Processing Strategies L. 68
Separate Baskets 68

Shared Baskets 68

Partial Deletes 70

3.3.3 Research Directions 71

3.4 Optimizer Pipeline and DataCell Implementation 71
3.5 Experimental Analysis oL 73
3.5.1 Micro-benchmarks 73
Metrics 74
Interprocess Communication Overhead 74

Pure Kernel Activity 75

Batch Processing 7

Alternative Strategies 78

3.5.2 The Linear Road Benchmark 78

The Benchmark 79
Implementation in the DataCell 79

Evaluation 82

CONTENTS

3.6 Summary . . .o.o. .. e e
4 Query Language
4.1 Introduction
4.1.1 Contributions
4.1.2 Outline
4.2 DataCell Model
421 Baskets
4.2.2 Receptors and Emitters
4.2.3 Basket Expressions
4.2.4 Continuous Queries
4.2.5 Application Modeling
4.3 Querying Streams
4.3.1 Filterand Map
4.3.2 Splitand Merge L.
4.3.3 Aggregation oo
4.3.4 Metronome and Heartbeat
4.3.5 Basket Nesting
4.3.6 Bounded Baskets 0L
4.3.7 Stream Partitioning
4.3.8 Transaction Management
4.3.9 Sliding Windowso
4.4 Summary e
5 Incremental Processing in DataCell
5.1 Imntroduction.
5.1.1 Contributions L
51.2 Outline
5.2 Window-based Processing
5.3 Continuous Re-evaluation
5.4 Incremental Processing
54.1 The Goal
5.4.2 Splitting Streams oL
5.4.3 Operator-level vs Plan-level Incremental Processing
5.4.4 Plan Rewriting o oL
Splitting
Query Processing L oL
BasicLoop
Transition Phase

86

89
89
90
90
91
91
92
92
94
94
95
96
96
98
98
100
100
101
101
101
103

10 CONTENTS

Intermediates Maintenance 113

Continuous Processing 114

Discarding Input L. 114

5.4.5 Generic Plan Rewriting 115
5.4.6 Exploit Column-store Intermediates 115
5.4.7 Merging Intermediates oL 116
5.4.8 Simple Concatenation 116
5.4.9 Concatenation plus Compensation 117
5.4.10 Expanding Replication, 118
5.4.11 Synchronous Replication 119
5.4.12 Multi-stream Queries. L. 120
5.4.13 Landmark Window Queries 122
5.4.14 Time-based Sliding Windows 122
5.4.15 Optimized Incremental Plans 122

5.5 Optimizer Pipeline in DataCell for Incremental Query Plans . . . 124
5.6 Experimental Analysis oL 125
Experimental Set-up and Outline 126

5.6.1 Basic Performance 126
5.6.2 Varying Query Parameters 129
Selectivity 129

Window Size 130

Landmark Queries 130

Step Size 131

5.6.3 Optimization 133
5.6.4 Comparison with a Specialized Engine 133

5.7 Conclusions 136
6 Conclusions 139
6.1 Contributions 140
Basic DataCell Architecture 140
Incremental Processing 141

6.2 Looking Ahead o 141
6.2.1 Multi-Query Processing 142
Splitting and Merging Factories 142

DataCell Cracking 143

6.2.2 Adaptationo 143
Adaptive Behavior in Traditional Streams 143

Adaptive Behavior in DataCell 144

Adaptive DataCell Query Plans 144

CONTENTS

6.2.3
6.2.4

Dualism o
Query Relaxation
Approximate Kernels
Query Morphing oL

6.3 Distributed Stream Processing
6.4 DataCell in Different Database Kernels.
6.5 Summary e

Bibliography

List of Figures

Summary

Samenvatting

Acknowledgments

CURRICULUM VITAE

Education

Employment & Academic Experience
Publications
Honors and Awards

Reviewing

SIKS Dissert

ation Series

163

165

167

169

171
171
171
172
175
175

177

12

CONTENTS

Chapter 1

Introduction

1.1 From the Theory of Forms to the Knowledge
Boom

Knowledge is a concept that the ancient philosophers studied more than 2000
years ago. Plato and Aristotle, already in 400 BC, tried to understand and
define what is knowledge and how it is created and acquired. In the Theory of
Ideas (or Forms), Plato argues that the knowledge is already created and given
to us from a universal metaphysical level. In this way, he claims that we learn
in this life by remembering and trying to imitate the principles that our soul
already encloses from the world of Ideas. On the other hand, Aristotle, the most
important student of Plato for twenty years, supported that the observation and
the study of particular phenomena will lead us to the real knowledge.

Over the years, the definition of knowledge constituted an ongoing debate
among philosophers and the triptych of the true justified belief has been chal-
lenged by modern epistemologists several times (Gettier, 1963). However, scien-
tists, through the steps they follow in research, help us to realize how we come
to the genesis of scientific knowledge. In that sense, we could say that scientific
research agrees with the empirical aristotelean philosophy, since it depends on
the observation, the measurement and the study of evidence. The collection of
data, its process and evaluation constitute critical steps that transform the pure
data into information, and in turn the latter one into scientific knowledge.

Even without a globally agreed definition of what knowledge is, it is a uni-
versal conviction that knowledge constitutes a very powerful and valuable good.

13

14 CHAPTER 1. INTRODUCTION

Apart from the science and technology, connected to knowledge by an endless
two-way bond, almost all the aspects of everyday life depend on knowledge and
can be improved by using the existing know-how, saving us from constantly
reinventing the wheel.

Today, tons of information surrounds us where we can acquire from many and
different sources, such as books, mass media, social networks, etc. In particular,
the World Wide Web consists of a bottomless source of new information, readily
available at our fingertips. The amount of data being generated every day is
still growing exponentially; it seems that for the first time in history there is
more information than we can even process and consume. However, information
alone does not directly bring us closer to the philosopher’s true knowledge. To
this end, it becomes a matter of major importance to find ways to manage,
analyze, selectively discard and exploit all this data we collect and turn it into
(useful) knowledge.

1.2 Data Management

The father of history, Herodotus, aptly predicates that “Of all men’s miseries the
bitterest is to know so much and to have control over nothing”. This quote was
not randomly said by Herodotus, the person who first realized the importance of
collecting, confirming, writing, organizing and delivering to the next generations
historic material that was taking place at his time. To have control over our
knowledge thesaurus is an important issue, and it becomes even more difficult
the more information we have to access and the more we need to combine
multiple data sets.

Taking a closer look at the technological achievements of the last century,
we see that they drastically affected the creation of knowledge. In the mid
of 20th century, the technological evolution and most importantly transistor’s
invention, brought us closer to the information technology revolution. The
reason for that was twofold; firstly it allowed the miniaturization of all modern
electronics that brought on the digital information age and secondly it triggered
the creation of cheaper and more powerful computational units that were able to
store and process the generated data. A few decades later, the microprocessor
made feasible the generation and process of such large amount of data that one
hundred years ago it was hard, even impossible, to manipulate in a manual way.

To this end, data management very soon became the main concern of in-
formation technology. The big firms and organizations that were continuously
generating data on a daily basis, kept asking for new technologies that would

1.2. DATA MANAGEMENT 15

allow them to process, analyze, visualize and manage their data in a more ef-
ficient way. Furthermore, fundamental sciences such as astronomy and biology
came across even more demanding issues, since the data they started producing
and want to discover patterns exceeds by far the needs of all the other fields.
The geneticist Richard Lewontin, in his book titled Biology as Ideology: The
Doctrine of DNA, characteristically states that the knowledge itself is not pow-
erful enough, but it further empowers only those who have or can acquire the
power to use it.

1.2.1 Database Management Systems

The necessity for new information technologies became very soon a clear research
target for the computer science community and the first data management pro-
totypes came already around the 1960s. These systems were mostly customized
and used only in large organizations, who could afford the extremely high costs.
Back then, a database was designed to be the system that would be responsible
to store, organize and access enormous quantities of digital data in an automatic
and efficient way.

One of the first Database Management Systems (DBMSs), called IMS, was
built by IBM back in 1968 for NASA’s Apollo space program. Since then, we
meet the database technology almost in every aspect of our electronic life. Shop-
ping at a store, borrowing a book from the library, making bank transactions,
or requesting student transcripts are only some of the examples that imply the
existence of a database. A DBMS typically consists of the appropriate software
that provides the insertion of new data in the database, the modification and
deletion of existing data and more importantly the efficient search and retrieval
of data that qualifies the requester’s constrains.

A milestone in the database research was the relational model, originally
formulated and proposed by Edgar Codd in the 1970s (Codd, 1970). There the
data is organized into a set of tables, which are related to each other in many
and different ways. Each table follows a predefined schema and each record
(tuple) stored in a table must also respect the same schema in order to be valid.
One of the nice properties of the relational model is that we can add and ac-
cess data, without reorganizing the tables every time we do so. A table can
have many records and each record can have many fields (attributes). In the
relational model, we distinguish the tuples of a table using a unique key, called
primary key. Another type of keys are the foreign keys, used to create links
between tables. In this way, the navigation among tables and the retrieval of
those entries that qualify the user’s request was dramatically improved, com-

16 CHAPTER 1. INTRODUCTION

pared to other previously used models, e.g., hierarchical and network database
model. Consider for example the case of a university database; there we could
have several different tables such as the “students”, the “courses” and the “pro-
fessors” tables. For each student we may keep a record, marked by a unique
student ID, and other attributes that better describe the student, e.g., name,
date of birth and address. Moreover, we may keep track of which courses he
has successfully passed and the evaluation he has received, by linking the two
different tables, i.e., the tables “students” and “courses”. Also, each course is
linked to the “professors” table to indicate who is teaching it in each semester.
By organizing our data in that structured way, we can easily navigate through
the tables and retrieve any combinative query, e.g., give me all the professors
that teach a course with success rate greater than 70% and average student
grades 8 out of 10, for at least 5 years in a row.

The success of the relational model, mainly comes from the fact that it works
in a declarative way. Relational databases are extremely easy to customize to
fit almost any kind of data. The user is able to access and manipulate his data
without being involved in technical decisions that have to do with designing
how the data will be stored and how the requests are going to be executed.
Through SQL, a declarative query language, the user obtains full control over
the data and is able to describe in an abstract way what kind of information
he is interested in, keeping his hands clean of any internal low-level system
specifications. On the contrary, the DBMS is in charge to decide autonomously
what is the best way to organize and physically store the data, and designs the
appropriate strategy for getting the user’s queries answered.

Apart from the powerfulness and the flexibility that the database systems
provide, another reason that contributed to their wide use is coming for the
fact that they are generic enough and able to handle multiple users at the same
time. A DBMS has the appropriate mechanisms to always ensure data integrity,
despite multiple concurrent users or different application programs are accessing
the same database. The ACID properties are the main rules at the database
cookbook, that guarantee safe transaction executions. In short, the first rule,
called atomicity, implies that once a transaction starts it should be fully com-
pleted otherwise it should become in a status as if it never happened. All
transactions must maintain the consistency of the database. Two concurrent
transactions must be isolated and not interfere with each other while happening.
Finally, once a transaction is completed the DBMS guarantees that its impact to
the database will be durable from here on. Working under these rules and bal-
ancing with mastery between reliability and performance, the database systems
very soon convinced the big firms and organizations that they are trustworthy

1.3. DATA STREAM MANAGEMENT 17

and skilled to manage their valuable data.

Database management systems were created to provide persistent data stor-
age and an efficient and reliable answering mechanism. It is the suggested
complete software solution, when the application scenario prerequisites that the
data is a priori known and relatively static. A DBMS typically stores, orga-
nizes, indexes and prepares the stored data to the best of its knowledge and it
becomes ready to accept and immediately answer the potential queries that will
be posed in the future. Once a request comes, the database system syntacti-
cally and semantically analyzes it, and based on a predefined set of rules, as well
as previously acquired query processing experience (e.g., statistics, indices), it
decides what is the best query plan to use for deriving the matching answers.
The execution engine precisely follows the designed query plan, and evaluates
the query over the data that is currently stored in the database.

Database systems constitute an alive evolving research field for the past 50
years. Their quick commercial exploitation, challenged their initial capabilities
and brought out their potential weak points. Many research subfields have been
created to fill in the gaps and strengthen their features; some focus at the core
level of query processing and optimization, and others cope with higher level
topics such as language interfaces, distributed and parallel processing, privacy
and security issues or research related to web applications. The diverse mar-
ket needs motivate the expansion of different database architectures. Both a
small business and an astronomical data center may use a database system, but
their fundamentally different requirements drove researchers and developers to
design different database architectures and solutions. Many open source proto-
types, as such PostgreSQL, MySQL and MonetDB not only survived through
the years but also keep leading the database research. Moreover the big players
of the commercial arena, such as Oracle, IBM and Microsoft, are continuously
investing in the ongoing database technology evolution.

Half a century after the first prototypes, database systems are still the center
of attention of information technology. It seems that there are still more to
research, since new data sources challenge their capabilities and performance
every day.

1.3 Data Stream Management
Plenty of application scenarios fit in the traditional database processing scheme.

However, a new type of applications, called data streams, that came a few
decades after the establishment of the DBMSs, could not be satisfied by that

18 CHAPTER 1. INTRODUCTION

model. In the data stream scenario, we have to deal with the continual genera-
tion and processing of an infinite flood of data (stream). Queries on the other
hand, appear to be persistent, namely once they are submitted they remain
active forever or for at least a long period of time. These two fundamental
differences on the queries and data lifetime, became enough to make very soon
clear that database systems were not skilled to handle such applications. This
way, the computer scientists started looking for new system architectures that
could fulfill the new requirements.

A potentially large application domain stimulates the creation of data stream
management systems (DSMSs). Sensors, organized in wireless networks, that
continuously measure physical, biological or chemical input, nicely fit in the data
stream model. The sensors produce streams of data that continuously should
be analyzed in real-time to keep track of environmental conditions and detect
anomalies in case they happened. Smoke detectors, health-care monitors and
traffic controllers are only some simple examples that fall in that application
scenario. Furthermore, sensor networks take control over smart building design,
or can be used to wildlife tracking systems to give rich information to animal
biologists.

In the same line, network monitoring systems continuously need to analyze
the network traffic to catch potential problems, such as unusual activity, delays,
server crashes and bottlenecks. They derive information enclosed in IP packets,
while they are passing through the network, and generate the appropriate alerts
when they diagnose a problematic behavior.

Financial trading applications is another scenario that meets the data stream
requirements. The idea is the same also here, continuous fast updated infor-
mation coming from different sources, should be analyzed and combined to
accomplish profitable transactions. The list of applications that inspired the
creation of data stream systems is long. For example, consider that the World
Wide Web provides a plethora of streaming opportunities through web feeds.
Users are able to subscribe to interesting sources of information and they are
automatically notified when new data is available.

DSMS vs. DBMS

Let us now see in more detail what are the main fundamental differences between
the database and the data stream application scenario.

e Continuous query processing.

In a stream application, we need mechanisms to support long-standing/

1.3.

DATA STREAM MANAGEMENT 19

continuous queries over data that is continuously updated from the en-
vironment. The queries are issued once and then they stay active for a
long time, monitoring the incoming data. On the contrary in a database
scenario, the user poses a query and receives the corresponding answers
only once. If he wants to check for potentially different answers later, he
should re-submit the same query to the database. The database tradition-
ally, evaluates that queries all over again, without taking into account the
previous evaluation.

Data lifetime.

In the database scenario, the data is characterized as persistent. Updates
over the data are expected but their rate is less frequent than the incoming
rate of queries. On the other side, in a stream application, we should be
prepared to handle an infinite sequence of data in real-time. Typically
once the data comes it is analyzed against waiting queries and then it is
forgotten.

Pull vs. Push model

Taking into account the way that a DBMS treats data and queries, we
could say that it follows a pure pull-based model, since each time a new
query arrives, the engine pulls the data from the disk to search for answers.
On the contrary, a typical DSMS works in a push-based way, pushing the
incoming streams to meet the interested waiting queries.

Real-time processing

In data stream applications, it is very important to achieve real-time pro-
cessing. Delays may affect answer’s validity and also could produce system
bottlenecks, since more data will be continuously collected. A data stream
engine should be alert and process the incoming data in real-time.

‘Workload fluctuations

Data stream arrival may vary dramatically. There are application sce-
narios with low data input rates, such as sensors that update their mea-
surements every one minute, or other cases where we have to deal with
extremely high input stream rates. For example, most recent genera-
tion of satellites provides ground reception rates of 300 Mbit/sec and 800
Mbit/sec. Environment and workload changes call for adaptive processing
strategies at the query evaluation level to achieve the best query response
time. In databases we have to deal with workload variation too, but in

20 CHAPTER 1. INTRODUCTION

terms of queries. In that case, it may become mandatory to update our
indices over the stored data.

e Window processing

As we have already mentioned a stream is an infinite sequence of data.
Given that hardware and software have limitations, we also need to limit
the maximum amount of data we can gather and process within a given
time budget. The initial stream processing models were very simple; they
were producing answers by considering only one incoming tuple at a time.
The window processing model came as an intermediate solution between
single tuple and database processing. In this case, the system produces
answers considering a number of collected stream tuples, instead of just a
single one. The window processing model increases the expressiveness of
stream systems, allowing for aggregations and joins in addition to simple
filtering queries.

e Query languages

Taking all the previous factors into account, the existence of new data
models and query languages was necessary for the establishments of the
DSMSs. The language used in relational databases, was not sufficient to
represent the different nature and semantics of stream data and queries.

Given these differences, and the unique characteristics and needs of continu-
ous query processing, the pioneering DSMS architects naturally considered that
the existing DBMS architectures are inadequate to support stream processing
and achieve the desired performance. Another aspect is that the initial stream
applications had quite simple requirements in terms of query processing. This
made the existing DBMS systems look overloaded with functionalities. These
factors led researchers to design and build new architectures from scratch and
several DSMS solutions have been proposed over the last years giving birth to
very interesting ideas and system architectures, e.g., (Babcock et al., 2004; Bal-
akrishnan et al., 2004; Chandrasekaran et al., 2003; Chen et al., 2000; Cranor
et al., 2003; Girod et al., 2007).

1.4. THE DATACELL: A DSMS INTO THE HEART OF A DBMS 21

1.4 The DataCell: a DSMS into the heart of a
DBMS

1.4.1 Motivation

As we discussed earlier, the diverse needs for persistent data management and
continuous queries processing, brought two different system architectures. How-
ever, the data management evolution does not seem to stop here. The last few
years a new processing paradigm is born, where incoming data (stream) needs
to quickly be analyzed and possibly combined with existing data to discover
trends and patterns. Subsequently, the new data enters the data warehouse and
is stored as normal for further analysis if necessary.

Natural sciences such as astronomy and biology that deal with large amounts
of data, also motivate that paradigm. In 2015 the astronomers will be able to
scan and catalog the entire night sky from a mountain-top in Chile, recording
30 Terabytes of data every night which incrementally will result in an abso-
lutely massive 150 Petabyte database (over the operation period of ten years).
It will be capturing changes to the observable universe evaluating huge statis-
tical calculations over the entire database. Another characteristic data-driven
example is the Large Hadron Collider (LHC) (LHC, 2010), a particle accelerator
that will revolutionize our understanding for the universe, generating almost 40
Terabytes of data every day and collecting 15 petabytes of data annually. The
same model stands for modern data warehouses which enrich their data on a
daily basis creating a strong need for quick reaction and combination of scalable
stream and traditional processing (Winter and Kostamaa, 2010).

In this new paradigm incoming streams of data need to quickly be analyzed
and possibly combined with existing data to discover trends and patterns. We
need scalable query processing that can combine continuous querying for fast
reaction to incoming data with traditional querying for access to the existing
data. However, neither pure database technology nor pure stream technology
are designed for this purpose.

In this thesis, we propose that a complete integration of database and stream-
ing technology is the way to go. We focus on the design, study and development
of such a system that integrates both streaming and database technologies in
the most natural way. A fully functional stream engine, called DataCell, is de-
signed on top of an extensible DBMS kernel. Our goal is to fully exploit the
generic storage and execution engine of the DBMS as well as its complete opti-
mizer stack. The end goal is a single system that does combine properties and

22 CHAPTER 1. INTRODUCTION

features from both the database world and the stream world, and thus achieves
efficient performance for both one-time and continuous queries.

1.4.2 The Basics

The ultimate goal of this thesis is to support full data management of persistent
and streaming data within an integrated processing kernel. Instead of building
a new system from scratch we opt to work over an extensible DBMS kernel such
that we can exploit mature techniques and algorithms in the area of database
systems. The challenge becomes how to extend such a scalable system such that
it supports stream processing in addition to one-time processing.

Stream researchers in the past argued that this is not feasible as it would be
very inefficient. DataCell shows that this is not true anymore, and it successfully
combines both paradigms.

Our design and implementation is over the MonetDB system. MonetDB
is an open source column-store database management system, developed and
maintain at CWI. Several aspects of MonetDB make this research possible. For
instance, MonetDB allows for easy manipulation and extension of its optimizer
module which allows us to easily introduce new optimizer rules specific for Dat-
aCell while at the same time exploiting all existing optimizer rules a DBMS has
to offer. In addition, MonetDB is one of the leading column-store systems. We
heavily exploit its column-store nature in our techniques to speed up stream
processing exploiting critical column-store features such as vectorization.

The main idea is that when stream tuples arrive into the system, they are
immediately stored in (appended to) a new kind of lightweight tables, called
baskets. By temporarily collecting tuples into baskets, we can evaluate the
continuous queries over the baskets as if they were normal one-time queries
and thus we can reuse any kind of algorithm and optimization designed for a
modern DBMS. Once a tuple has been seen by all relevant queries/operators, it
is dropped from its basket.

Continuous query plans are represented by factories, i.e., a kind of co-routine,
whose semantics are extended to align with table producing SQL functions.
Each factory encloses a query plan that once it is evaluated it produces a partial
result at each call. For this, a factory continuously reads data from the input
baskets, evaluates its query plan and creates a result set, which it then places in
its output baskets. The factory remains active as long as the continuous query
remains in the systems, and it is always ready to consume incoming stream
data.

The execution of the factories is orchestrated by the DataCell scheduler. The

1.4. THE DATACELL: A DSMS INTO THE HEART OF A DBMS 23

firing condition is aligned to arrival of events, once there are tuples that may be
relevant to a waiting query we trigger its evaluation over these tuples. Further-
more, the scheduler manages the time constraints attached to event handling,
which leads to possibly delaying events in their baskets for some time. One im-
portant merit of the DataCell architecture, is the natural integration of baskets
and tables within the same processing fabric. A single factory can interact both
with tables and baskets, this way we can naturally support queries interweaving
the basic components of both models.

By introducing the baskets, the factories and the DataCell scheduler, our
architecture becomes able to proceed sufficiently data streams, without also
losing any database functionality. That is the natural first step that covers
the gap between the two incompatible processing models. However, numerous
research and technical questions immediately arise. The most prominent issues
are the ability to provide specialized stream functionality and hindrances to
guarantee real-time constraints for event handling. Also, we need to cope with
(and exploit) similarities between the many standing queries, in order to deal
with high performance requirements.

1.4.3 Research Challenges

It is a major challenge for the DataCell architecture to efficiently support and
integrate all specialized stream features. The above description gives the first
directions that allow the exploration of quite flexible strategies, once we have
to deal with low latency deadlines or multi-query processing.

The road-map for DataCell research calls for innovation in many important
aspects of stream processing and the combination with already stored data.
Thus, one can distinguish between challenges that come from the fact that
stream processing is performed in a DBMS and challenges that arise by com-
bining the two query processing paradigms in one.

Regarding the first challenge, the goal is to provide all essential streaming
functionality and features without losing the DBMS’s strong storage and query-
ing capabilities. We draw a path where most of the streaming functionality
is provided via plan rewriting and minimal lower level operator changes. For
example, resource management, scheduling, and optimization in the presence of
numerous queries is a critical topic. Similarly to incremental processing, this
area has received a lot of attention with innovative solutions, e.g., (Sharaf et al.,
2008). DataCell offers all the available ingredients to achieve similar levels of
multi-query optimizations while keeping the underlying generic engine intact.
For example, a single factory (i.e., plan) may dynamically split into multiple

24 CHAPTER 1. INTRODUCTION

pieces or merge with other relevant factories to allow for efficient sharing of
processing costs leading to very interesting scenarios in how the network of
factories and baskets is organized and adapts. Again, these issues can be re-
solved at a higher level through plan rewriting. The intermediates created for
incremental processing can be reused by many queries, while partitioning and
scheduling decisions can also adapt to the new parameters. We have the appro-
priate technology to make multiple queries to cache and exploit intermediates
in a column-store kernel.

Regarding the second challenge, a plethora of rich topics arise especially
when optimization becomes an issue. For example, query plans that touch
both streaming data and regular tables might require new optimizer rules or
adaptations of the current ones. Overall, DataCell opens the road for an exciting
research path by looking at the stream query processing issue from a different
perspective.

1.4.4 Contributions

The particular contributions of this thesis can be summarized as follows:

(1) A new Stream Paradigm. We show that the past belief that stream
query processing requires a specialized engine only for stream process-
ing is not sufficient anymore, especially due to the increasing scalability
requirements.

(2) DataCell architecture. We introduce the basic DataCell architecture,
to exploit the notion of scalable systems that can provide both streaming
and database functionality. We describe what are the minimal additions
that allow for stream processing within a DBMS kernel.

(3) Incremental processing. We show how to efficiently support core stream-
ing functionalities in DataCell, i.e., incremental stream processing and
window-based processing.

(4) Multi-query processing. We investigate multi-query processing oppor-
tunities, another critical feature required in stream processing. Sharing
access of common basket, splitting, merging and dynamically reorganizing
the factories content are some cards we use on the performance hunting
game.

1.4. THE DATACELL: A DSMS INTO THE HEART OF A DBMS 25

()

(6)

A Query Language for DataCell. We propose a language for DataCell
that extends SQL. It can be used to access both streaming and database
data at the same time.

Research Path. We discuss in detail the new research area that opens
with the notion of DataCell and what are the future challenges towards
systems that can handle streams of multiple Terabytes on a daily basis.

1.4.5 Published Papers

The content of this thesis is built based on a number of publications in ma-
jor international conferences in the area of database management systems, of
computer science.

(1)

Martin Kersten, Erietta Liarou and Romulo Goncalves. A Query Lan-
guage for a Data Refinery Cell. In Proceedings of the 2nd International
Workshop on Event Driven Architecture and Event Processing Systems,
(EDA-PS), in conjunction with VLDB’07, Vienna, Austria, September
2007

Erietta Liarou, Romulo Goncalves and Stratos Idreos. Exploiting the
Power of Relational Databases for Efficient Stream Processing. In Pro-
ceedings of the 12th International Conference on Extending Database
Technology (EDBT), Saint-Petersburg, Russia, March 2009

Erietta Liarou and Martin Kersten. DataCell: Building a Data Stream
Engine on top of a Relational Database Kernel. In Proceedings of the
35th International Conference on Very Large Data Bases, VLDB PhD
‘Workshop, Lyon, France, August 2009

Erietta Liarou, Stratos Idreos, Stefan Manegold and Martin Kersten. En-
hanced Stream Processing in a DBMS Kernel. Submitted for publication
at the moment of printing this thesis.

Martin Kersten, Stefan Manegold, Stratos Idreos and Erietta Liarou. The
Researcher’s Guide to the Data Deluge: Querying a Scientific Database in
Just a Few Seconds. In Proceedings of the Very Large Databases Endow-
ment (PVLDB) and in the 37th VLDB Conference, Seattle, WA, August
2011. Challenges and Visions best paper award.

26 CHAPTER 1. INTRODUCTION

(6) Erietta Liarou, Stratos Idreos, Stefan Manegold, Martin Kersten. Mon-
etDB/DataCell: Online Analytics in a Streaming Column-Store. In Pro-
ceedings of the 38th International Conference on Very Large Data Bases
(PVLDB), Istanbul, Turkey, August 2012.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 we extensively
discuss related work. First, we search the roots of data stream management
systems in the heart of database applications and technology. We dedicate
enough space to describe and compare our work with other successful pure
data stream management systems, from the academic and commercial world.
Finally, we provide the mandatory background of our development platform,
the MonetDB system.

In Chapter 3 we describe the basic DataCell architecture. First, we explain
how we represent continuous queries and data streams in DataCell, the two
main stream concepts that until now were unknown in conventional databases.
Then we describe the full architecture and the newly introduced components
that give full stream functionality to our system.

In Chapter 4 we present the DataCell language interface. We propose a semi-
procedural language as a small extension of SQL, that can be used to access
both streaming and database data at the same time. The language concepts
introduced are compared against building blocks found in “pure” stream man-
agement systems. They can all be expressed in a concise way and demonstrate
the power of starting the design from a full-fledged SQL implementation.

Chapter 5 presents how we handle in DataCell one of the most important
specialized stream processing requirements, i.e., incremental window processing.
Even with the conventional underlying infrastructure that MonetDB offers to
DataCell, we manage to compete against a specialized stream engine, elevating
incremental processing at the query plan level, instead of building specialized
stream operators.

Chapter 6 concludes the thesis and discusses a number of future interesting
open topics and possible research directions towards a complete data manage-
ment architecture that integrates database and stream functionalities in the
same kernel. DataCell opens the road for an exciting research path by look-
ing at the stream query processing issue from a different perspective and by
taking into account the needs of modern data management for scalable stream
processing combined with traditional query processing. Topics we discuss in

1.5. THESIS OUTLINE 27

this chapter include multi-query processing, adaptive query processing, query
relaxation, distributed processing, DataCell in different architectures, etc.

28

CHAPTER 1.

INTRODUCTION

Chapter 2

Background and Related
Work

Kranzberg’s second law states that “invention is the mother of necessity”.
Though history proves that great technological innovations were given birth
at certain periods to fulfill stressed human needs, the technological evolution
of the recent years in many scientific areas, creates new meeds all over again.
Scientific evolution on various research areas brought data overloading on many
aspects of our lives. Modern applications coming from various fields, e.g., fi-
nance, telecommunications, networking, sensor and web applications, require
fast data analysis over data that are continuously updated.

In this new kind of applications, called data stream applications, we first of
all need mechanisms to support long-standing / continuous queries over data that
is continuously, and at high rate, updated by the environment. To achieve good
processing performance, i.e., handling input data within strict time bounds,
a system should provide incremental processing where query results are fre-
quently and instantly updated as new data arrives. Systems should scale to
handle numerous co-existing queries at a time and exploit potential similarities
between the large number of standing queries. Furthermore, environment and
workload changes may call for adaptive processing strategies to achieve the best
query response time. Even if conventional DBMSs are powerful data manage-
ment systems, the hooks for building a continuous streaming application are not
commonly available in such systems.

DataCell balances at the edge between the database management systems

29

30 CHAPTER 2. BACKGROUND AND RELATED WORK

world and the data stream systems world. Recognizing all the nice features
of a modern database system, we decided to reconsider the effort to implant
streaming capabilities within it. In the DataCell project we exploit, reuse,
redirect and extend the useful parts of the existing database technology, to
support a more complete query processing scenario, where the need of active
and passive processing co-exist.

In this chapter, we discuss relevant background knowledge and related work.
The reader can roughly go through the major research efforts of the past twenty
years that aimed to define and cope with the active query processing scenario.
We point out the main contributions of previous research works that originally
introduced the concept of continuous query processing and we compare and
place our contributions in the proper context. The interested reader can further
explore the rich background research area given the hints this chapter provides.

Particularly in this chapter, we recap the first attempts to define the new
needs of data streams and continuous query processing and the early works that
were oriented in this direction. The majority of the classical (as we know it to-
day) pure data stream processing systems started developing two decades after
the establishment of the database technology. We dedicate ample space to dis-
cuss the most important and characteristic stream processing systems from the
academic and commercial world, emphasizing on their architecture and compar-
ing their main characteristics with our work. In addition, we touch upon some
of the most interesting and important issues of stream processing, including dis-
cussion on specialized stream operators, incremental processing and multi-query
optimization techniques. We discuss recent work that shares a vision similar to
the one of DataCell, namely works that ideally want to tightly integrate on-line
and passive data processing. At the end of this chapter, we provide the nec-
essary background for the DataCell philosophy and implementation, describing
the backbone of our architecture, the MonetDB database system.

2.1 First Steps towards Real-time Processing

The continuously evolving database technology successfully undertakes a ma-
jor part of the information technology (IT) duties during the last few decades.
Database systems traditionally have been focusing on organizing and storing
structured data providing consistent and accurate query processing. These char-
acteristics helped to expand and establish their omnipresence in most of the
data management domains. However, the technological innovations naturally
bring new application requirements that eventually impose further functional

2.1. FIRST STEPS TOWARDS REAL-TIME PROCESSING 31

requirements on database systems.

An example constitutes the real-time control applications that started emerg-
ing together with the establishment of the conventional database technology. In
this kind of application scenarios, the user desires the data management sys-
tem to actively control, monitor, and manage his data whenever a change is
performed. He expects that the system remains alert and automatically pro-
ceeds to the appropriate operations, that he has already defined, when a specific
condition becomes satisfied. General database integrity constraint enforcement
and business rules motivated the requirement for this new processing model.
However, conventional database management systems are built to act passively.
They offer the appropriate mechanism, to the users and the application pro-
grams, to create, modify and retrieve the stored data only after an explicit
request. The effort to transform the passive, query-driven database system into
an active one, was the first notable attempt to address the requirements of the
monitoring applications, e.g., (Schreier et al., 1991; Sellis et al., 1989; Dayal
et al., 1988), etc.

Already in the early 1970s, the Data Base Task Group (DBTG) demon-
strated remarkable work in the development of database technology, by propos-
ing the CODASYL (Olle, 1978) data model. CODASYL is the network model
for databases, developed to handle many of the problems associated with flat-
file systems. The CODASYL data manipulation language (CODASYL Data
Description Language Committee, 1973) is one of the first to address the mon-
itoring requirements, adding a reactive feature that was not included in the
conventional database philosophy up to that time. It provides the appropriate
mechanism to automatically invoke the corresponding predefined stored proce-
dures when a specific situation arises. The ON clause below encapsulates this
functionality:

ON <command list> CALL <database procedure>

The database procedure, could be any arbitrary stored procedure, written in the
programming language COBOL. It is called and executed immediately after the
execution of the command list statement.

Query-By-Example (QBE) (Zloof, 1975; Zloof, 1977), a database query lan-
guage for relational database systems, is another popular work developed by
IBM in the mid of 1970s that provides a trigger facility for integrity constraints
checking. QBE allows users to define conditions associated with data modifica-
tion operations, such as insert, delete and update operations on tables or tuples.
If the condition is valid, the operation will commit, otherwise if it is false, the

32 CHAPTER 2. BACKGROUND AND RELATED WORK

effects of the operation are undone. In addition, the ¢time trigger conditions are
evaluated at a specified time point or at specified time frequency (Zloof, 1981).

2.1.1 Triggers

One of the first data control mechanism, i.e., triggers, had already been encap-
sulated early in the relational DBMSs. A trigger subsystem was proposed in
the mid of 1970s for the pioneer System R relational database research project
(Eswaran and Chamberlin, 1975; Eswaran, 1976), that influenced the follow-up
database research and technology. The SQL standard committee made a ma-
jor effort to support triggers and constraints (ISO-ANSI, 1990). Almost all the
(commercial) database systems, such as, Oracle, Microsoft SQL Server and DB2
include trigger mechanisms.

A trigger is a user defined stored procedure attached to a single database
table or view that is called implicitly and automatically executes when the
underlying data is modified in a specific way, i.e., when an INSERT, UPDATE,
or DELETE statement is issued against the associated table. The user should
also specify whether the trigger must occur BEFORE or AFTER the triggering
event or transaction bounds. The DBMS actively monitors the arrival of the
desired information and applies it to the database state.

The trigger mechanism was introduced to express and implement complex
business rules, which could not be expressed using integrity constraints directly.
Initially it was considered as a promising technology to address the require-
ments of new monitoring applications. However, it quickly proved inadequate
to support more complex scenarios; for instance, most DBMSs in their early
versions allowed only one trigger for each INSERT, UPDATE, or DELETE
data modification event for each table, while triggers over views were not al-
lowed at all. Triggers most likely was limited to one level, where the trigger
actions do not cause other triggers to be fired (even today, the modern DBMSs
can support only a specific depth of nested triggers, e.g., Oracle and Microsoft
SQL Server support nesting depth of 32 triggers, while Sybase supports nesting
depth of 16 triggers). Also, the existing systems of that period considered to be
weak on preventing errors coming from mutable tables. Scaling to millions or
just thousands of trigger conditions in a database, it becomes inefficient to poll
the database periodically and check if any of the conditions are satisfied, e.g.,
(Abiteboul et al., 2005).

Taking all these factors into account, the plan to fully express the demanding
monitoring applications through immature triggers was soon abandoned and
researchers kept looking for new methods to support richer expressiveness and

2.1. FIRST STEPS TOWARDS REAL-TIME PROCESSING 33
improved scalability.

2.1.2 Active Databases

The database research in the mid of 1980s started seriously looking at extending
the database technology with powerful rule-processing capabilities, leading to
the emergence of a new type of database systems, called active database systems
(ADBMSs).

ADBMSs were mainly centered around the concept of the trigger mechanism,
and seemed very promising to face the new challenges that the monitoring ap-
plications introduced, e.g., (Schreier et al., 1991; Sellis et al., 1989; Dayal et al.,
1988), etc. They were considered to be much more powerful than the conven-
tional DBMSs, since they could perform all the standard functionalities that
the passive databases provide, in addition to their encapsulated event-driven
architecture, that allows users and application programs to specify the desired
active behavior.

Active rules, also known as Event-Condition-Action (ECA-rules), tradition-
ally consist of the three following parts:

e Fuvent: specifies the signal that causes the rule to be triggered.

e Condition: is checked when the rule is triggered. If it is satisfied, it
causes the rule’s execution.

e Action: specifies which further actions (updates) should be taken over
the data, and is executed when the rule is triggered and its condition is
true.

The triptych “when event, if condition, then action” describes in an oversimpli-
fied way the active databases’ processing model. In active relational databases,
events are modeled as changes of the state of the database, i.e., insert, delete
and update operations can trigger a reaction. In object-oriented systems, we
can define more general events, such as user-defined or temporal events (Bancil-
hon et al., 1988). The database users can define multiple active rules, that once
the system accepts them, it should continuously monitor the relevant events.
In general, the goal of active databases was to avoid unnecessary and resource
intensive polling in monitoring applications. Detailed surveys and books catalog
in detail the major efforts of active database research, e.g., (Widom and Ceri,
1996; Paton and Diaz, 1999). In the next section we discuss an overview of a
characteristic research project, Alert system (Schreier et al., 1991).

34 CHAPTER 2. BACKGROUND AND RELATED WORK

Alert

Many research projects, e.g., HIPAC (Dayal et al., 1988), Ariel (Hanson, 1996)
and POSTGRES rule system (Stonebraker et al., 1988; Stonebraker et al., 1989),
demonstrated that the active database technology was convenient for enforcing
business rules and general integrity constraints, which are going beyond key or
referential integrity constraints. One of the most notable research results is the
outcome of IBM’s effort to transform the relational passive Starbust database
system, to an active DBMS, called Alert (Schreier et al., 1991).

Alert users are able to define active tables, a kind of append-only tables, in
which the tuples are never updated in-place and new tuples are added at the end.
Active queries are queries that range over active tables and their fundamental
difference from passive queries is coming from cursor’s behavior. Tuples can be
added to an active table even after the cursor for an active query is opened and
they contribute to answering the query once they are inserted. Thus, the active
queries are defined over past, present, and future data, whereas the domain of
the passive queries is limited to past and present data. Active queries may be
associated to one or more active tables and on abstract user-defined objects, a
kind of views. Furthermore, users can express more complex query scenarios
by nesting and joining multiple active queries. These features make the Alert
architecture much more powerful than the trigger technology at that time was
encapsulated in the passive DBMSs. A nice property of the Alert system, is that
its rule language achieves full expressiveness with a minimal extension of SQL.
In this way, it reuses almost all of the existing semantic checking, optimization,
and execution implementations of the passive DBMS that it extends. The from
clause represents the triggering event, caused by an append to an active table,
the where clause specifies the condition, and the select clause the action that
should be taken.

2.1.3 DataCell vs Active Databases and Triggers

DataCell shares similar goals and concepts with triggers and active database sys-
tems. All try to extend and re-use the existing powerful conventional database
technology by embedding a reactive behavior. In particular active tables and
queries share commonalities with DataCell’s fundamental units, i.e., baskets
and factories (to be further explained in Chapter 3). However, the DataCell
model aim to be much more generic by allowing continuous queries to share
(i.e., access and modify) multiple baskets (as will be shown in Chapter 3), take
their input from other queries and so on, creating a network of queries inside

2.1. FIRST STEPS TOWARDS REAL-TIME PROCESSING 35

the kernel where a stream of data and intermediate results flows through the
various queries.

DataCell adds support for specialized stream functionalities, i.e., incremental
processing. Such functionality is crucial, especially for modern high data volume
stream applications. The lack of efficient incremental processing in most active
databases and databases with triggers, severely affected query latency, and was
actually one of the reasons to convince architects to move from the database
model to the pure data stream processing model (Abiteboul et al., 2005).

Furthermore, even though active databases address and formulate the re-
quirement for reactive behavior and continuous monitoring, they did not after all
provide a scalable enough architecture to deal with frequent data updates, as the
pure data stream applications later demanded. DataCell is designed and built
on top of the extensible MonetDB kernel; the simple and clean stream-oriented
design of our architecture helps us inherit and maintain the original DBMS scal-
ability while at the same time combining it with conventional database features.
The end result is a stream system that scales well and it can do both continuous
queries and one-time queries (Liarou et al., 2009).

MonetDB exploits several modern database architecture trends in its design
and DataCell exploits and enhances these features for efficient stream process-
ing. MonetDB is a column-store system that relies on operator-at-a-time bulk
processing and materialization of all (narrow) intermediate result columns. This
is a convenient and crucial feature to support DataCell’s incremental processing
requirement. On the contrary, relational active databases were built by extend-
ing traditional row store databases. This means that they used a tuple-at-a-time
volcano-style pipelining execution model, which at first glance seemed inefficient
in providing intermediate result materialization for each query operator.

Furthermore, the internal DataCell scheduler, that handles and controls mul-
tiple co-existing (active) queries, dealing also with concurrency issues, is an
advanced model that scales much better than the plain trigger mechanism in
DBMSs. In the past, it was already observed that triggers do not scale in
terms of the number of triggers that an active database can support, leaving as
an alternative to implement scalable triggers outside the DBMS. The DataCell
scheduler on the other hand is an integral part of the kernel and thus can better
co-ordinate and exploit scheduling opportunities and at a lower cost.

36 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Real-time Databases

Real-time database systems (RTDBSs), as their name implies, also address the
requirement for real-time query processing, e.g., (Kao and Garcia-Molina, 1993;
Abbott and Garcia-Molina, 1989; Abbott and Garcia-Molina, 1992; Haritsa
et al., 1990). RTDBSs can be viewed as a fusion between real-time systems and
DBMSs; they extend traditional database technology, adding time constraints
and deadlines to transactions. Apart from such features, RTDBSs also introduce
and deal with transaction time constraints and temporal validity of data.

In an RTDBS the user specifies when a transaction could start and more im-
portantly when it should finish. Thus, we should process time-sensitive queries
and temporally valid data, dealing with priority query scheduling and concur-
rency control issues. In such an environment, it is difficult to guarantee all time
constraints. Thus, the scheduling policy tries to minimize the number of vio-
lated time constraints. In real-time databases, it is very important to consider
and specify what the system should do when transaction deadlines are not met.
The transaction scheduler should allocate available system resources, e.g., CPU
cycles, in order to try to meet the specified transaction constraints. However,
in many cases the knowledge of resource requirements may not be available
up-front and dynamic changes on the workload may occur. In this case, the
system should prevent the forthcoming threat of missing multiple transaction
deadlines, and should proceed with adaptive decisions and overloading tech-
niques. Different policies then are applied, e.g., rejection of new transactions,
early termination of already running ones, etc.

Data stream management systems share similar concerns and goals with
RTDBSs. In a typical data stream application, we should evaluate the waiting
continuous queries, as soon as possible, trying to minimize the query latency.
Scheduling proposals for real-time databases, that are based either on static
criteria, e.g., priority-driven, or on dynamic criteria, can also be applied in
stream processing policies. Real-time transactions differentiate from continuous
queries in data stream systems, to the degree that the latter only allow read-only
operations over data streams, while a real-time transaction may involve both
read and write operations. This functionality complicates the processing policy
once concurrent transactions co-exist. In real-time databases, transactions are
usually sporadic while in data streams systems we expect that the continuous
queries may stay for a long time in the system. In case we are dealing with hard
real-time transactions, we may end up aborting entire transaction units, when
we come through overloading conditions, while stream applications setting firm
deadlines could allow us to proceed with data volume minimizing (and thus

2.3. PUBLISH-SUBSCRIBE SYSTEMS 37

resorting to approximate answers).

As modern data stream systems developed over the years, they evolved
to specialized stream engines with features missing from traditional real time
databases. Such an example is the feature of incremental processing, i.e., win-
dow based queries. Such queries allow a system to keep answering queries with-
out blocking the query processing for an “infinite” amount of time. For example,
this is useful for blocking operators, or simply for long running queries over large
amounts of data. A whole research area was developed then in order to study
how to define the proper semantics over such window queries and how to ef-
ficiently answer such queries at run time, with multiple concurrent continuous
queries, etc. We also explore incremental query processing in the context of
window queries, in the DataCell architecture at Chapter 5.

2.3 Publish-Subscribe Systems

Publish /subscribe (in short pub/sub) systems are also addressing the monitoring
requirements of modern applications and to some extent are related to the area
of data stream processing systems. They are mainly applied on a distributed
setting and allow simple data and query models.

In pub/sub systems, subscribers register their interest in an event or pattern
of events, while publishers, publish available information without addressing it
to specific recipients. Typically, a very large number of autonomous computing
nodes pool together their resources and rely on each other for data and services.
The coordinator messaging infrastructure is responsible to propagate the appro-
priate messages and notifications to all interested waiting subscribers, once a
related resource becomes available. The information to be shared are stored at
the publisher’s side, and after being discovered by an interested party, they are
downloaded using a protocol similar to HTTP. This asynchronous and loosely
coupled messaging scheme is a far more scalable architecture than point-to-point
alternatives.

Publish/subscribe systems share the same goal: to scale in terms of subscrip-
tion management, and to assure efficient request-event matching. But beyond
this basic goal, there are important differences among the various proposed sys-
tems regarding the metadata kept at each network node, the topology of the
network, the placement of the shared files, the routing algorithms for queries
and replies, the degree of privacy offered to its users, etc.

Different architectures and pub/sub processing models have been proposed;
for instance, there are subject-based or content-based systems, following a push-

38 CHAPTER 2. BACKGROUND AND RELATED WORK

based, pull-based, or both models, and being implemented in a client-server
or peer-to-peer (P2P) architecture. Prominent examples of publish/subscribe
applications constitute peer-to-peer databases (Huebsch et al., 2003; Gedik
and Liu, 2003; Loo et al., 2004; Fausto et al., 2002), e-learning systems like
EDUTELLA (Nejdl et al., 2002) and ELENA (Simon et al., 2003), semantic
blogging systems like (Karger and Quan, 2005) and RSS feeds, and parallelized
systems like the SETI@home (SETI@Qhome, 1999), the Folding@home (Fold-
ing@home, 2000) and the most recent LHC@home (LHC@home, 2004) where a
large task is broken into small subtasks and each one is assigned to a different
node that offers computing cycles. File-sharing systems such as Napster (Nap-
ster, 1999), Gnutella (Gnutella, 2000) and KazaA (KazaA, 2001) have made
this model of interaction very popular.

2.4 The New Era of Data Stream Management
Systems

In the previous sections, we discussed several designs and trends towards con-
tinuous query processing. Active databases, real time databases and trigger
mechanisms have all been essential towards developing the streaming technol-
ogy. None of them, though, was fully prepared for the new requirements of
modern streaming query processing applications. Data stream management
systems nowadays should handle input data within strict time bounds, and
provide instant answers and reactions as new data arrives. Incremental query
processing, window-based query processing, scaling to thousands of co-existing
queries, etc. are important in a stream system. Even if conventional DBMSs
are powerful data management systems, the hooks for building a continuous
streaming application are not commonly available in that systems.

Given these differences, and the unique characteristics and needs of con-
tinuous query processing, the pioneering Data Stream Management Systems
(DSMS) architects naturally considered that the existing DBMS architectures
were inadequate to achieve the desired performance. Another aspect is that
the initial stream applications had quite simple requirements in terms of query
processing. This made the existing DBMS systems considered overloaded with
functionalities. These factors led researchers to design and build new archi-
tectures from scratch. Several DSMS solutions have been proposed over the
last years giving birth to very interesting ideas and system architectures. In
this section, we present some characteristic DSMSs research prototypes and we

24. THE NEW ERA OF DATA STREAM MANAGEMENT SYSTEMS 39

compare the main points of these class of systems with our work.

2.4.1 Aurora

Aurora (Carney et al., 2002; Abadi et al., 2003a; Abadi et al., 2003b; Babcock
et al., 2004; Balakrishnan et al., 2004) is a data stream management system,
that was developed between 2001 to 2004, as a result from the collaboration of
three research groups from MIT, Brown University and Brandeis University.

Aurora uses the bozes and arrows paradigm, followed in most workflow sys-
tems. Each box represents a query operator and each arc represents a data flow
or a queue between the operators. Each query is built out of a set of opera-
tors and all submitted queries constitute the Aurora query network. SQuAl is
Aurora’s query algebra that provides nine stream-oriented primitive operations,
i.e., Filter, Map, Union, Aggregate, Join, BSort, Resample, Read, and Update.
Out of these operators users construct queries. Each operator may have mul-
tiple input streams (i.e., union), and could give its output to multiple boxes
(i.e., split). Tuples flow through an acyclic, directed graph of processing opera-
tions. At the end, each query converges to a single output stream, presented to
the corresponding application. Aurora can also maintain historical storage, to
support ad hoc queries.

The query network is divided into a collection of n sub-networks. The deci-
sion is taken by the application administrator, who decides where to insert the
connection points. Connection points indicate the network modification points
and specify the query optimization limits. Thus, new boxes can only be added
to or deleted from the connection network points over time. The Aurora opti-
mizer, instead of trying to optimize the whole query graph at once, it optimizes
it piece-by-piece. It isolates each sub-network, surrounded by connection points,
individually from the rest of the network and optimizes it in a periodic manner.

Figure 2.1 illustrates the high-level system model of Aurora system, as it
was originally presented by the authors in their publications (Carney et al.,
2002). The router connects the system to the outside world. It receives the
input data stream from the external data sources, e.g., sensors, and from inside
boxes, and if the query processing is completed it forwards the tuples to external
waiting sources, otherwise it re-feeds them to the storage manager for further
processing. The storage manager stores and retrieves the data streams on in-
memory buffers between query operators. Also it maintains historical storage,
to serve potential ad-hoc queries. A persistence specification indicates exactly
for how long the data is kept.

40 CHAPTER 2. BACKGROUND AND RELATED WORK

inputs 4 outputs
Storage
Manager

{ ‘ Router
—{ It
<
Q > —
—{ 111 [P
2
. Scheduler
1 Box Processors
Catalogs
Load | QoS
Shedder Monitor

Figure 2.1: Aurora System Architecture (Carney et al., 2002)

The scheduler is the core Aurora component (Babcock et al., 2004). It de-
cides when an operator should be executed, feeding it with the appropriate
number of queuing tuples. In Aurora, there is one box processor per operator
type, this part is responsible for executing a particular operator when the sched-
uler calls it. Then, the box operator forwards the output tuples to the router.
The scheduler continuously monitors the state of the operators and the buffers
and repeats this procedure periodically.

The designers of Aurora dedicated a big part of their research on address-
ing methods that guarantee Quality of Service (QoS) requirements when the
system becomes overloaded (Tatbul, 2007). They proposed load shedding tech-
niques that attach to the query network a kind of system-level operators that
selectively drop tuples. Awurora applies such operators when the rate on in-
coming streams overwhelm the stream engine, trying to balance between the

2.4. THE NEW ERA OF DATA STREAM MANAGEMENT SYSTEMS 41

expected side-effect on result accuracy meeting QoS application requirements.
Later Medusa (Zdonik et al., 2003) and Borealis (Abadi et al., 2005) extended
the single-site Aurora architecture to a distributed setting. In 2003, the original
research prototype was commercialized into a start-up company named Stream-
Base Systems (StreamBase Systems, Inc, 2003).

2.4.2 STREAM (STanford stREam datA Management)

STREAM system (Motwani et al., 2003; Arasu et al., 2003) is another data
stream processing research prototype that was designed and developed at Stan-
ford university from 2001 to 2006. STREAM provides a declarative query lan-
guage, called CQL (DBL,), that allows queries which can handle data both from
continuous data streams and conventional relations. CQL extends SQL by al-
lowing stream and relational expressions and introducing window operators. In
CQL there are three classes of operators, (a) the stream-to-relation operators,
that produce a relation from a stream (sliding windows), (b) the relation-to-
relation operators, that produce a relation from one or more other relations,
such as in relational algebra and SQL and (c) relation-to-stream operators, i.e.,
Istream, Dstream, and Rstream, that produce a stream from a relation. There
are also three classes of sliding window operators, i.e., time-based, tuple-based,
and partitioned. However, in practice it does not support sliding windows with
a slide bigger than a single tuple.

Also in STREAM, operators read from and write to a single or multiple
queues. Furthermore, synopses are attached to operators and store their in-
termediate state. This is useful when a given operator needs to continue its
evaluation over an already processed input. For instance, when we need to
maintain intermediate results, i.e., the content of a sliding window or the rela-
tion produced by a subquery. Synopses are also used to summarize a stream
or a relation when approximate query processing is required. Scheduling in
STREAM also happens at the operator level as it used to in stream systems;
either it is simple scheduling strategy (Motwani et al., 2003) like round-robin or
FIFO or the more sophisticated Chain algorithm (Babcock et al., 2003). The
scheduling methods in STREAM focus on providing run-time memory mini-
mization. STREAM also includes a monitoring and adaptive query processing
infrastructure called StreaMon (Babu and Widom, 2004), which consists of three
components, i.e., the Executor, that runs query plans and produces results, the
Profiler, that collects statistics about stream and query plan characteristics, and
the Reoptimizer, that takes the appropriate actions to always ensure that the
query plan and memory usage are optimal for the current input characteristics.

42 CHAPTER 2. BACKGROUND AND RELATED WORK

Shared memory
infrastructure

TelegraphCQ
Executor

Query

Eans K

Clients

Output Listener E%
Queues Parser Proxy
Optimizer @%

Catalog

TelegraphCQ
Wrapper

o

[

Figure 2.2: TelegraphCQ System Architecture (Chandrasekaran et al., 2003)

isks

Once there is not enough CPU or memory available, the system proceeds with
approximate query processing, trying to handle the query load by sacrificing
accuracy. It introduces random sampling operators into all query plans, in a
way that the relative error is the same for all queries. STREAM deals with
memory-limitations also by discarding older tuples from the window joins oper-
ators, leaving free space for new data. The goal here is to maximize the size of
the resulting subset.

24. THE NEW ERA OF DATA STREAM MANAGEMENT SYSTEMS 43

2.4.3 Telegraph-CQ

TelegraphCQ (Chandrasekaran et al., 2003) is a continuous query processing
system built at University of California, Berkeley. The main focus is on adaptive
and shared continuous query processing over query and data streams. The
team in Berkeley, built TelegraphCQ based on previous experience obtained
while developing the preliminary prototypes, CACQ (Madden et al., 2002) and
PSoup (Chandrasekaran and Franklin, 2002).

PSoup addresses the need for treating data and queries symmetrically. Thus,
it allows new queries to see old data and new data to see old queries. This
feature is passed to the TelegraphCQ architecture as well. Furthermore, Tele-
graphCQ successfully addresses and resolves important limitations that were not
addressed in previous prototypes, e.g., it deals with memory and resource limita-
tions, trying to guarantee QoS over acceptable levels and focuses on scheduling
and resource management of groups of queries. TelegraphCQ constructs query
plans with adaptive routing modules, called Eddies (Avnur and Hellerstein,
2000). Thus, it is able to proceed to continuous run-time optimizations, dy-
namically adapting to the workload. Eddies modules adaptively decide how to
route data to appropriate query operators on a tuple-by-tuple basis.

TelegraphCQ shares a similar goal and vision as the one of DataCell. It
tries to leverage the infrastructure of a conventional DBMS, by reusing a big
part of the open source PostgreSQL code base. With minimal changes at par-
ticular components, it tries to use the front-end piece of code that PotegreSQL
already offers, the Postmaster, the Listener, the System Catalog, the Query
Parser and the PostgreSQL Optimizer. However, the TelegraphCQ developers
proceeded to significant changes on the deeper PostgreSQL parts, such as the
Executor, the Buffer Manager and the Access Methods, to make them compati-
ble with the unique requirements of stream processing. Figure 2.2 illustrates an
overview of the TelegraphCQ architecture as it is originally presented in (Chan-
drasekaran et al., 2003). The rightmost oval part is the most solid contribution
of PostgreSQL to the new system architecture. The processes included in there,
are connected using a shared memory infrastructure, and the generated query
plans are placed in a query plan queue. From there, the Ezecutor picks them
up to proceed with the actual processing, trying first to classify the plans into
groups for sharing work. The query results are continuously placed in the output
queues. The Wrapper mechanism allows data to be streamed into the system.

As we already mentioned, TelegraphCQ follows a similar approach to Dat-
aCell, by trying to exploit the PostgreSQL infrastructure. However, there are
significant differences between PostgreSQL and MonetDB that significantly af-

44 CHAPTER 2. BACKGROUND AND RELATED WORK

fect the whole streaming architectures. DataCell reuses the original storage and
execution engine of the MonetDB kernel, elevating the streaming behavior at
the embedded scheduler module. In contrast, TelegraphCQ needs new storage
and access methods. In addition, in DataCell we do not follow a tuple-at-a-time
processing method, instead we favor batch execution which brings high per-
formance and scalability. Tuple-at-a-time has a significant functional overhead
that severely hinders scalability. On the other hand, bulk processing for streams
is a new area which brings performance and additional research questions as to
how to properly tune the degree of batch processing throughout query plans.
Furthermore, DataCell exploits array based processing as it builds on top of the
pure column-store infrastructure of MonetDB. Arrays together with bulk pro-
cessing are heavily exploited for efficient incremental window-based processing
in DataCell. In contrast, TelegraphCQ is built on top of a typical row-store
infrastructure.

2.4.4 Other Data Stream Management Systems

The unique requirements of monitoring applications, establish a new research
field that demonstrates interesting results on new system architectures, query
languages, specialized algorithms and optimizations. So far, we presented three
characteristic efforts from the academic world. However the research efforts do
not stop there; plenty of other interesting stream systems have been presented
to related journals and conferences, and some of them found their way to the
commercial world.

A noteworthy result is Gigascope (Cranor et al., 2003), a lightweight stream
processing system that was developed in AT&T to serve network applications. It
emerged from requirements of the company itself, e.g., traffic analysis, network
monitoring and debugging.

NiagaraCQ (Chen et al., 2000) is an XML-based continuous query system
that focuses on query optimization to improve scalability. This system tries to
exploit query similarities to group queries and potentially save processing cost.
The grouping process happens incrementally and once new queries are added to
the system, they find their place in the appropriate groups.

Different language semantics are introduces in the Cayuage system, devel-
oped in Cornell university. Cayuage is a stateful publish /subscribe system based
on a non-deterministic finite state automata (NFA) model.

Big vendors like Microsoft (Ali et al., 2009), IBM (Gedik et al., 2008) and
Aleri/Coral8 (Coral8, 2007) have also become active in the data stream area
during the last few years, developing high performance complex event processing

24. THE NEW ERA OF DATA STREAM MANAGEMENT SYSTEMS 45

systems. Their focus is on pure stream processing, providing additional external
access to historical data. Furthermore, they have moved their architectures in
distributed settings to cope with the increasing data requirements.

2.4.5 DataCell vs Traditional Data Stream Architectures

In this chapter, we presented some well known data stream management sys-
tems. Each one contributed in a unique way to the broad research area of data
streams. However all of them follow the same philosophy; they are built from
scratch, dismissing the conventional database technology. DataCell fundamen-
tally differs from existing stream technology, by building the complete stream
functionalities on top of the storage and execution engine of a modern DBMS
kernel. In this way, it opens an interesting path towards exploiting and merging
technologies from both worlds.

The design of DataCell allows to exploit batch processing when the applica-
tion allows it. Tuple-at-a-time processing, used in most stream systems, incurs
a significant overhead while batch processing provides the flexibility for better
query scheduling, and exploitation of the system resources. This point has also
been nicely exploited in (Lim et al.,) but in the context of the DataCell, build-
ing on top of a modern DBMS, it brings much more power as it can be combined
with algorithms and techniques of relational databases.

In addition, DataCell exploits the batch processing logic during scheduling.
It tries to keep together as many query operators as possible. In this way, it
wraps in a single factory all or a subset of the operators that belong to the
same query plan for a given continuous query. In any case, it avoids scheduling
one operator at a time and tries to schedule groups of operators that can be
executed together. A factory may contain (parts of) query plans from more than
one queries. In this way, we increase scalability by minimizing the scheduling
overhead, i.e., by reducing the number of distinct units that the scheduler should
monitor and orchestrate at each moment and by reducing all the side-effects that
this process entails, e.g., access to storage units, switching function calls. Aurora
also recognizes the overhead that its first single-operator scheduling approach
causes, and introduces the notion of superboxes (Babcock et al., 2004). There,
a sequence of boxes is scheduled and executed as an atomic group. However,
it allows only the construction of superboxes that conclude to an output box,
without giving the flexibility to group together intermediate groups of operators,
as DataCell does.

Furthermore, DataCell tries to fully exploit the state-of-the-art modern
database software stack that MonetDB offers. This fact brings a number of

46 CHAPTER 2. BACKGROUND AND RELATED WORK

fundamental differences between DataCell and the majority of pure data stream
systems. For example, one such difference is that DataCell does not use buffers
to temporary hold the flowing stream tuples, and consequently does not require
the existence and maintenance of a separate storage manager component. On
the contrary, it uses baskets, a kind of temporary main-memory tables which are
more powerful than the simple buffer structure and more lightweight than the
conventional database tables. In Section 3, we present the key components of
our architecture and discuss in further detail what are the differences between
basket and MonetDB tables.

The DataCell architecture interweaves basket and tables in the most natural
way, since it develops both technologies in the same kernel. In this way, we can
support queries that require data access from both streams and tables, and
generate query plans having all this information in our plate already at the
generation and optimization phase. Many other pure stream systems address the
modern application requirements for access to both storage units. However, they
reach their goal by either connecting a specialized DBMS to a stream engine, or
by creating simplistic storage unites (compared to a full-blown database system)
and execution mechanism that mimic the database work.

In DataCell, we manage to deal with crucial stream processing challenges,
like the incremental window-based processing, by re-using most of the given
database infrastructure. By introducing only small language extensions in SQL,
we can re-use the SQL front-end and slightly extend the parser that MonetDB
already offers. In order to maintain and reuse the generic storage and execution
model of the DBMS, we elevate the stream processing at the query plan level.
Proper optimizer rules, scheduling and intermediate result caching and reuse, al-
low us to modify the DBMS query plans for efficient incremental processing. In
addition, we avoid to re-design and implement from scratch specialized stream
operators as the pure stream systems do. Instead, by introducing the appro-
priate scheduling mechanisms we manage to achieve full stream functionalities
using the efficient scalable operators of MonetDB. In this way, shared processing
in our case does not happen at the operator level but also at the factory level,
trying to maintain and reuse (batches of) intermediate results.

In this thesis we took a completely different route by designing a stream
engine on top of an existing relational database kernel. Such an approach was
considered a failure in the past due to the fact that databases where to slow
in handling streams. Here, we show that DataCell achieves high performance,
scales and naturally combines continuous querying for fast reaction to incoming
data with traditional querying for access to existing data.

2.5. A NEW STREAM PROCESSING PARADIGM 47

2.5 A new Stream Processing Paradigm

In the previous section, we discussed the main philosophy of the specialized
stream engines that were developed to efficiently handle continuous query pro-
cessing in bursty data arrival periods. However, the technological evolutions
keep challenging the existing architectures with new application scenarios. In
recent years, a new processing paradigm is born (Liarou et al., 2009; Qiming
and Meichun, 2010; Franklin et al., 2009) where incoming data needs to quickly
be analyzed and possibly be combined with existing data to discover trends and
patterns. Subsequently, the new data enters the data warehouse and is stored
for further analysis if necessary. This new paradigm requires scalable query
processing that combines continuous and conventional processing.

The Large Synoptic Survey Telescope (LSST) (LSST, 2010) is a grandiose
paradigm. In 2018 the astronomers will be able to start scanning the sky from
a mountain-top in Chile, recording 30 Terabytes of data every night which in-
crementally will lead a 150 Petabyte database (over the operation period of ten
years). LSST will be capturing changes to the observable universe evaluating
huge statistical calculations over the entire database. Another characteristic
data-driven example is the Large Hadron Collider (LHC) (LHC, 2010), a parti-
cle accelerator that is expected to revolutionize our understanding for the uni-
verse, generating 60 Terabytes of data every day (4GB/sec). The same model
stands for modern data warehouses which enrich their data on a daily basis cre-
ating a strong need for quick reaction and combination of scalable stream and
traditional processing (Winter and Kostamaa, 2010). However, neither pure
database technology nor pure stream technology are designed for this purpose.

Truviso Continuous Analytics system (Franklin et al., 2009), a commercial
product of Truviso, is another recent example that follows the same approach
as DataCell. Part of the team that was working on the TelegraphCQ project,
proceeded to the commercialized version of the original prototype. They extend
the open source PostgreSQL database (PostgreSQL, 2012) to enable continuous
analysis of streaming data, tackling the problem of low latency query evalua-
tion over massive data volumes. TruCQ integrates streaming and traditional
relational query processing in such a way that ends-up to a stream-relational
database architecture. It is able to run SQL queries continuously and incre-
mentally over data while they are still coming and before they are stored in
active database tables (if they). TruCQ’s query processing outperforms tradi-
tional store-first-query-later database technologies as the query evaluation has
already started when the first tuples arrive. It allows evaluation of one-time
and continuous queries as well as combinations of both query types.

48 CHAPTER 2. BACKGROUND AND RELATED WORK

Another recent work, coming from the HP Labs (Qiming and Meichun,
2010), confirms the strong research attraction for this trend. They define an
extended SQL query model that unifies queries over both static relations and
dynamic streaming data, by developing techniques to generalize the query en-
gine. They extending the PostgreSQL database kernel (PostgreSQL, 2012),
building an engine that can process persistent and streaming data in a single
design. First, they convert the stream into a sequence of chunks and then con-
tinuously call the query over each sequential chunk. The query instance never
shuts down between the chunks, in such a way that a cycle-based transaction
model is formed.

The main difference of DataCell over the above two related efforts lies in
the underlying architecture. DataCell builds over a column-store kernel using a
columnar algebra instead of a relational one, bulk processing instead of volcano
and vectorized query processing as opposed to tuple-based. Here we exploited
all these architectural differences to provide efficient incremental processing by
adapting the column-store query plans.

2.6 Data Stream Query Languages

The unique monitoring application requirements, brought new data manage-
ment architectures and consequently the need for new querying paradigms. In
the literature we distinguish three classes for query languages that define the
proper data streaming semantics.

Declarative

Many stream systems define and support languages that maintain the declar-
ative and rich expressive power of SQL. A characteristic example is CQL (for
Continuous Query Language) (DBL,), which is introduced and implemented in
the STREAM prototype (Motwani et al., 2003; Arasu et al., 2003). Apart from
streams, CQL also includes relations. Thus, we can write queries from each
category and queries that combine both data types as well. In CQL, we have
three types of operators: the relation-to-relation operators, that SQL already
offers, the stream-to-relation operators, that reflect the sliding windows, and the
relation-to-streams operators, that produce a stream from a relation. There, we
also have three classes of sliding window operators in CQL: time-based, tuple-
based, and partitioned windows. We can denote a time-based sliding window
of size T on a stream S, with the expression [Range T]. A tuple-based sliding

2.7. THE MONETDB SYSTEM 49

window of size N on a stream S is specified by following the reference to S in
the query with [Rows NJ.

GSQL is another SQL-like query language, developed for Gigascope to ex-
press queries for network monitoring application scenarios. GSQL is a stream-
only language, where all inputs to a GSQL operator should be streams and the
outputs are streams as well. However, relations can be created and manipulated
using user-defined functions. Each stream should have an ordering attribute,
e.g., timestamp. Only a subset of the operators found in SQL are supported by
Gigascope, i.e., selections, aggregations and joins of two streams. In addition
to these operators, GSQL includes a stream merge operator that works as an
order-preserving union of ordered streams. In GSQL, only landmark windows
are supported directly, but sliding windows may be simulated via user-defined
functions.

StreaQuel is the declarative query language proposed and used in Tele-
graphCQ prototype. It supports continuous queries over a combination of tables
and data streams. By using a for-loop construct with a variable ¢ that moves
over the timeline as the for-loop iterates, we can express the sequence of win-
dows over which the user desires the answers to the query. Inside the loop we
include a Windowls statement that specifies the type and size of the window
over each stream. This way, snapshot, landmark and sliding window queries can
be easily expressed.

Procedural

A different approach to declarative SQL-like query languages, is a procedural
one. For instance in Aurora, the developers proposed SQuAl (for Stream Query
Algebra), a boxes-and-arrows query language. There, the user through a graph-
ical interface draws a query plan, placing boxes (i.e., operators) and arrows
(i.e., data streams) in the appropriate order, specifying how the data should
flow through the system. SQuAl accepts streams as inputs and returns streams
as output. However, it gives the option to the user to include historical data to
query processing through explicitly defined connection points.

2.7 The MonetDB System

In this section, we provide the necessary background for the rest of our presen-
tation, briefly describing the backbone of the DataCell architecture, the Mon-
etDB database system. MonetDB (MonetDB, 2012) is an open-source column-

50 CHAPTER 2. BACKGROUND AND RELATED WORK

oriented DBMS, developed at the database group of CWI (Centrum Wiskunde
& Informatica) in Amsterdam, the Netherlands, over the past two decades.

Row-store vs. Column-store architecture

MonetDB is a full fledged column-store engine; thus it stores and process data
one column at a time as opposed to one tuple at a time that traditional row-
stores do.

Let us first clarify what are the main differences between the two directions.
A row-oriented database system stores all of the values per row from a given
table together. The processing model in a row-store is typically based on the
volcano model, i.e., the query plan consumes one tuple at a time. Each tuple
goes all the way through every operator in the plan, before we move on to the
next tuple.

On the contrary, column-oriented DBMSs are inspired by the Decomposi-
tion Storage Model (DSM) (Copeland and Khoshafian, 1985), storing data one
column at a time. In this way, the system can benefit a lot in terms of 1/O
for queries that require to access only part of a table’s attributes and not the
whole table. Assume a table representing students in a university’s database.
This table will typically consist of a number of attributes, i.e., first name, last
name, date of birth, student ID, address, department, etc. Now let’s say that
the secretary of the university wants to analyze the data by posing the following
queries: find the average grades of the students per department, find the num-
ber of students that have exceeded the normal studying period, find the average
age of students per department, etc. In this kind of queries we access only a
part of the table “students”. In order to answer such queries in a row store
architecture we would need to load the whole table from disk to memory. On
the other hand, in a column-store architecture we only load the data (columns)
each query requests.

In general, row-store architectures are most appropriate when the database
is mostly used for online transaction processing (OLTP). There, we expect a
large number of short on-line transactions. On the other side, column-store ar-
chitectures are most appropriate for applications that handle analytical queries
for online analytical processing (OLAP). There, we expect relatively low volume
of transactions while queries are often very complex and involve aggregations
but usually focus on a subset of a table’s attribute.

2.7. THE MONETDB SYSTEM 51

The MonetDB Storage Model

In MonetDB, every n-ary relational table is represented as a collection of Binary
Association Tables called BATs (Boncz et al., 1998). A BAT represents a
mapping from an oid-key to a single attribute attr. Its tuples are stored
physically adjacent to speed up its traversal, i.e., there are no holes in the
data structure. For a relation R of k attributes, there exist k BATS, each
BAT storing the respective attribute as (key,attr) pairs. The system-generated
key identifies the relational tuple that attribute value attr belongs to, i.e., all
attribute values of a single tuple are assigned the same key. For base tables, they
form a dense ascending sequence enabling highly efficient positional lookups.
Thus, for base BATs, the key column is a virtual non-materialized column. For
each relational tuple ¢ of R, all attributes of ¢ are stored in the same position
in their respective column representations. The position is determined by the
insertion order of the tuples. This tuple-order alignment across all base columns
allows the column-oriented system to perform tuple reconstructions efficiently
in the presence of tuple order-preserving operators. Basically, the task boils
down to a simple merge-like sequential scan over two BATS, resulting in low
data access costs through all levels of modern hierarchical memory systems.

The MonetDB Execution Model

In MonetDB, SQL queries are translated by the compiler and the optimizer into
a query execution plan that consists of a sequence of relational algebra operators.
Each relational operator corresponds to one or more MAL instructions, while
each MAL instruction performs a single action over one or more columns in a
bulk processing mode.

MonetDB is a late tuple reconstruction column-store. Thus, when a query
is fired, the relevant columns are loaded from disk to memory but are glued
together in a tuple N-ary format only prior to producing the final result. Inter-
mediate results are also materialized as temporary BATs in a column format.
We can efficiently reuse intermediate results by recycling pieces of (intermedi-
ate) data that are useful for multiple queries (Ivanova et al., 2009). Also, in
Chapter 5 and (Liarou et al., 2012a) we show that the bulk processing model
of MonetDB and the materialized intermediate results are important compo-
nents in our effort to support incremental stream processing for window-based
continuous queries.

52 CHAPTER 2. BACKGROUND AND RELATED WORK

Let us now see a concrete example. Assume the following SQL query:

SELECT R.c

FROM R

WHERE R.a BETWEEN 5 AND 10
AND R.b BETWEEN 9 AND 20;

This query is translated into the following (partial) MAL plan:

Ral := algebra.select(Ra, 5, 10);
Rbl := algebra.select(Rb, 9, 20);
Ra2 := algebra.KEYintersect(Ral, Rbl);
Rcl := algebra.project(Rc, Ra2);

The first operator, algebra.select(Ra,v1,v2), searches the base BAT Ra
for attributes with values between vl and v2. For each qualifying attribute
value, the respective key value (position) is included in the result BAT Ral.
Since selections happen on base BATS, intermediate results are also ordered
in the insertion sequence. In MonetDB, intermediate results of selections are
simply the keys of the qualifying tuples, thus the positions of where these tuples
are stored among the column representations of the relation. In this way, given a
key /position we can fetch/project (positional lookup) different attributes of the
same relation from their base BATs very fast. Since both intermediate results
and base BATs have the attributes ordered in the insertions sequence, MonetDB
can very efficiently project attributes by having cache-conscious reads.

As we mentioned above, each MAL instruction is internally executed in a
bulk processing way. The implementation at the C code level of the MAL
instruction Ral := algebra.select(Ra,vl,v2) is as follows:

for (i = j = 0; i < nj; i++)
if (Ra.tailli] >= v1)
if (Ra.tailli] =< v2)
Ral.taill[j++] = i;

With tight for-loops in BAT algebra operators, we have the advantage of
high instruction locality that minimizes the instruction cache miss problem.

The MAL operator algebra.KEYintersect (Ral,Rb1) is a tuple reconstruc-
tion operator that performs the conjunction of the selection results by returning
the intersection of keys from Ral and Rb1 columns. Due to the order-preserving

2.7. THE MONETDB SYSTEM 53

Front-end

Back-end

Kernel
BAT Algebra Query Executor

E MAL Interpreter !
MonetDB i

Figure 2.3: MonetDB Architecture

selection, both Ral and Rbl are ordered on key. Thus, both intersection and
union can be evaluated using cache-, memory-, and I/O-friendly sequential data
access. The results are ordered on key, too, ensuring efficient tuple reconstruc-
tions.

Finally, the MAL operator algebra.project (Rc,Ra2) returns all key-attr
pairs residing in base BAT Rc at the positions specified by Ra2. This is a tuple
reconstruction operation. Iterating over Ra2, it uses cache-friendly in-order
positional lookups into Ra?2.

The MonetDB Software Stack

The MonetDB query processing scheme consists of three software layers. The
top layer is formed by the query language parser that outputs a logical plan ex-
pressed in MAL. The code produced by MonetDB/SQL is passed and massaged
by a series of optimization steps, denoted as an optimizer pipeline. The MAL
plans are transformed into more efficient plans enriched with resource manage-
ment directives. The pipeline to be used is identified by the SQL global variable
optimizer, which can be modified using a SQL assignment.

54 CHAPTER 2. BACKGROUND AND RELATED WORK

The extensible design of MonetDB opens the traditionally closed and mono-
lithic query optimization and execution engine, providing a modular multi-tier
query optimization framework. Optimizer pipelines in MonetDB can be con-
figured and extended to effectively exploit domain-specific data and workload
characteristics.

At the bottom of the MonetDB software stack there is the MAL interpreter.
It contains the library of highly optimized implementation of the binary re-
lational algebra operators. At the run-time the MonetDB engine takes into
account collected statistics of the participant BATs and it is able to choose
the best evaluation algorithm (physical operator) for each logical operator. For
example, once it comes to the execution of the MAL operator

Rel:=algebra.join(Ral,Rbl);

based on the size of Ral and Rbl columns, the engine may decide to execute
the hash join algorithm while in another case (with different data and statistics
in the corresponding columns) it may execute the sort merge join algorithm.

In Figure 2.3, we show the MonetDB architecture as a series of abstraction
layers. The interested reader can find more details on MonetDB in (MonetDB,
2012). In this thesis, we implement DataCell in the heart of MonetDB. Our
implementation represents a set of new optimization rules, operators, algorithms
and data structures that cooperate with the existing MonetDB features to give
the desired result.

2.8 Summary

In this chapter, we briefly discussed the information technology history, touching
on major attempts to define and support monitoring applications. We discussed
the first efforts to support real-time processing applications which came through
the conventional database technology. Then, we saw how the data explosion
and the need for sophisticated near-real time analysis brought the genesis of
specialized data streams management systems. Today, we are in an era where
the need to tightly combine both database and data stream technologies is
bigger than ever. Through this short survey we tried to highlight the major
point that makes DataCell a unique and novel research path. Finally, we give
the necessary background on the MonetDB system, which is the backbone of
the DataCell architecture.

In the following chapters we introduce in detail the DataCell architecture,
the DataCell query language and how DataCell handles specialized stream pro-

2.8. SUMMARY 55

cessing requirements, i.e., incremental window processing. In the last chapter
of this thesis, we summarize the major points of our architecture and discuss
open research directions that deserve thorough study and will bring us closer to
a scalable integrated system.

56

CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

DataCell Architecture®

3.1 Introduction

This chapter introduces the basic DataCell architecture. A system that nat-
urally integrates database and stream query processing inside the same query
engine. We start with a modern column-store architecture, realized in the Mon-
etDB system, and we design our new system based on this kernel. Our ultimate
goal is to fully exploit the generic storage and execution engine of the underly-
ing DBMS as well as its optimizer stack. With a careful design, we can directly
reuse all sophisticated algorithms and techniques of traditional DBMSs. A prime
benefit is that without having to reinvent solutions and algorithms for problems
and cases with a rich database literature we can support complex queries and
scalable query processing in a streaming environment.

The main idea is that when stream tuples arrive into the system, they are
immediately stored in (appended to) a new kind of tables, called baskets. By
collecting tuples into baskets, we can evaluate the continuous queries over the
baskets as if they were normal one-time queries. Thus, we can reuse many algo-
rithms and optimizations designed for a modern DBMS. Once a tuple has been
seen by all relevant queries/operators, it is dropped from its basket. The above
description is naturally oversimplified as this direction allows the exploration
of quite flexible strategies. For example, alternative directions include feeding
the same tuple into multiple baskets where multiple queries are waiting, split

*The material in this chapter has been the basis for the EDBT09 paper “Exploiting the
Power of Relational Databases for Efficient Stream Processing” (Liarou et al., 2009).

o7

58 CHAPTER 3. DATACELL ARCHITECTURE

query plans into multiple parts and sharing baskets between similar operators
(or groups of operators) of different queries allowing reuse of results and so on.
The query processing scheme of DataCell follows the Petri-net model (Peterson,
1977), i.e., each component/process/sub query plan is triggered only if it has
input to process while its output is the input for other processes.

3.1.1 Challenges and Contributions

Some questions that immediately arise, when we start thinking of and studying
the DataCell approach, are the following:

e How does DataCell guarantee responsiveness?

e How efficient continuous query processing can DataCell provide?
e What is the optimal basket size?

e When do the queries see an incoming tuple?

e Can we handle queries with different priorities?

e Can we support query grouping?

e Is it feasible for all kind of stream applications (e.g., regarding time con-
straints)?

The above questions are just a glimpse of what one may consider. This
chapter does not claim to provide an answer to all these questions, neither
does it claim to have designed the perfect solution. Our contribution is the
awareness that this research direction is feasible and that it can bring significant
advantages. We carefully carve the research space and discuss the opportunities
and the challenges that come with this approach.

This chapter presents a complete architecture of DataCell in the context of
the currently emerging column-stores. We discuss our design and implementa-
tion on top of the open-source column-oriented DBMS, MonetDB. DataCell is
realized as an extension to the MonetDB/SQL infrastructure and supports the
standard SQL’03 allowing stream applications to support sophisticated query
semantics.

Our prototype implementation demonstrates that a full-fledged database
engine can support stream processing completely and efficiently. The validity of
our approach is illustrated using concepts and challenges from the pure DSMS

3.2. THE DATACELL ARCHITECTURE 59

arena. A detailed experimental analysis using both micro-benchmarks and the
standard Linear Road benchmark demonstrates the feasibility and the efficiency
of the approach.

3.1.2 Outline

The remainder of this chapter is organized as follows. In Section 3.2, we present
a detailed introduction of the DataCell architecture at large. Section 3.3 dis-
cusses the query processing model and pinpoints on the wide open research
possibilities. In Section 3.5 we provide an experimental analysis of the proposed
DataCell architecture, including micro-benchmarks and using the Linear Road
benchmark. Finally, Section 4.4 concludes the chapter.

3.2 The DataCell Architecture

In this section, we discuss the DataCell prototype architecture, which is based
on top of MonetDB, positioned between the SQL-to-MAL compiler and the
MonetDB kernel. In particular, the SQL runtime has been extended to manage
the stream input using the columns provided by the kernel, while a scheduler
controls activation of the continuous queries. The SQL compiler is extended
with a few orthogonal language constructs to recognize and process continuous
queries. We discuss the language extension in Chapter 4.

We step by step build up the architecture and the possible research direc-
tions. DataCell consists of the following components: receptors, emitters, baskets
and factories. The novelty is the introduction of baskets and factories in the
relational engine paradigm. Baskets and factories can, for simplicity, initially
be thought as tables and continuous queries, respectively.

There is a large research landscape on how baskets and factories can interact
within the DataCell kernel to provide efficient stream processing. In the rest of
this section, we describe in detail the various components and their basic way
of interaction. More advanced interaction models are discussed in Section 3.3.2.

3.2.1 Receptors and Emitters

The periphery of a stream engine is formed by adapters, i.e., software compo-
nents to interact with devices, e.g., RSS feeds and SOAP web-services. The
communication protocols range from simple messages to complex XML docu-
ments transported using either UDP or TCP/IP. The adapters for the DataCell

60 CHAPTER 3. DATACELL ARCHITECTURE

D Receptor

Continuous
Query

Figure 3.1: The DataCell model

consist of receptors and emitters.

A receptor is a separate thread that continuously picks up incoming events
from a communication channel. It validates their structure and forwards their
content to the DataCell kernel for processing. There can be multiple receptors,
each one listening to a different communication channel/stream.

Likewise, an emitter is a separate thread that picks up events prepared
by the DataCell kernel and delivers them to interested clients, i.e., those that
have subscribed to a query result. The emitter automatically removes from the
kernel the delivering data. There can be multiple emitters each one responsible
for delivering a different result to one or multiple clients.

Both receptors and emitters are connected to a basket, the data structure
where they write to and read from the streaming data, as we describe in the
next subsection. Figure 3.1 demonstrates a simple interaction model between
the DataCell components; a receptor and an emitter can be seen at the edges
of the system listening to streams and delivering results, respectively.

3.2.2 Baskets

The basket is the key data structure of DataCell. Its role is to hold a portion of
a data stream, represented as a temporary main-memory table. Every incoming
tuple, received by a receptor, is immediately placed in (appended to) at least
one basket and waits to be processed.

Once data is collected into baskets, we can evaluate the relevant continuous
queries on top of these baskets. In this way, instead of feeding each individual
tuple to the relevant query, we evaluate each query over its input basket(/s)

3.2. THE DATACELL ARCHITECTURE 61

in one go (e.g., consuming all accumulated tuples at once). This processing
model resembles the typical DBMS scenario and thus we can exploit existing
algorithms and functionality of advanced DBMSs. Later in this section, we
discuss in more detail the interaction between queries and baskets.

The commonalities between baskets and relational tables allow us to avoid
a complete system redesign from scratch. Therefore, the syntax and semantics
of baskets is aligned with the table definition in SQL’03 as much as possible.
A prime difference is the retention period of their content and the transaction
semantics. A tuple is removed from a basket when it “has been consumed” by
all relevant continuous queries and it is not needed anymore. In this way, the
baskets initiate the data flow in the stream engine. More advanced and flexible
models are discussed in the next section.

The main differences between baskets and relational tables are as follows.

e Basket Integrity
The integrity enforcement for a basket is different from a relational table.
Events that violate the constraints are silently dropped. They are not
distinguishable from those that have never arrived in the first place. The
integrity constraint acts as a silent filter.

e Basket ACID
The baskets are like temporary global tables, their content does not survive
a crash or session boundary. However, concurrent access to their content
is regulated using a locking scheme and the scheduler.

e Basket Control
The DataCell provides control over the streams through the baskets. A
stream becomes blocked when the relevant basket is marked as DISABLED.
The state can be changed to ENABLED once the flow is needed again.
Selective (dis)enabling of baskets can be used to debug a complex stream
application.

e Basket Tuple FExpiration
In a stream application scenario, tuple expiration happens on a more fre-
quent basis than in a typical OLAP scenario. In DataCell, we handle data
stream expiration immediately and in a different way than we handle up-
dates and deletions in the underlying columnar architecture of MonetDB.
In MonetDB, for each column we maintain three different arrays to rep-
resent the original persistent tuples, the updated and inserted tuples, and
the deleted tuples. Once a (one-time) query is submitted, we first merge

62 CHAPTER 3. DATACELL ARCHITECTURE

the tuples from these three arrays to get only the valid tuple values and
then continue with the actual query evaluation. When the two secondary
arrays grow enough, then the merging happens automatically. Even if
the data deletion in an OLAP scenario looks similar to the data stream
expiration in a stream application scenario, it is inefficient to follow this
processing model since the accumulated number of expired tuples is ex-
pected to grow rapidly. Instead, in DataCell we choose to do complete
and instant data stream deletion, without maintaining the expired data
aside. This change implies a change to the generated query plans as well.
We now have only a single array instead of three (because we do deletions
in place) and consequently inside the plans there is no need to do any
merging of these arrays.

An important opportunity, with baskets as the central concept, is that we
purposely step away from the de-facto approach to process events in arrival order
only. Unlike other systems there is no a priori order; a basket is simply a (multi-
)set of events received from a receptor. We consider arrival order a semantic
issue, which may be easy to implement on streams directly, but also raises
problems, e.g., with out-of-sequence arrivals (Abadi et al., 2005), regulation
of concurrent writes on the same stream, etc. It unnecessarily complicates
applications that do not depend on arrival order. On the other hand, baskets
in DataCell provide maximum flexibility to perform both in-order and out-of-
order processing. They allow the system to select and process arbitrary groups
of tuples at a time, without necessarily following their arrival order.

Realizing the DataCell approach on top of a column-oriented architecture,
comes with all the benefits of the respective design. e.g., depending on the
workload there may be less I/O and memory bandwidth requirements for a
column-store. For a stream S of k attributes, we create a basket B that consists
of kK BATs (columns). Each BAT stores the respective attribute of stream S as
(key,attr) pairs. In this way, the basket representation in DataCell is like the
relational table representation in MonetDB (see Section 2.7). For each basket
B there exists an extra column, the timestamp column, that reflects the arrival
time of each tuple in the system.

In this way, we exploit all column-store benefits during query processing,
i.e., a query needs to read and process only the attributes required and not
all attributes of a basket. For example, assume a stream S that creates tuples
with k different attributes. In a row-oriented system, each query interested in
any of the attributes in S has to read the whole S tuples, i.e., all k attributes.
In DataCell, we exploit the column-oriented structure of the underlying model,

3.2. THE DATACELL ARCHITECTURE 63

and allow each query to bind only the attributes (of baskets) it is interested
in, avoiding to access extra data and reducing their footprint. Furthermore,
queries interested in different attributes of the same stream can be processed
completely independently. We encountered the above scenarios for numerous
queries in the Linear Road benchmark (Arasu et al., 2004) where each stream
contains multiple attributes while not all queries need to access all of them.

3.2.3 Factories

In this section, we introduce the notion of factories. The factory is a convenient
construct to model continuous queries. In DataCell, a factory contains all or
just a subset of the operators of the query plan for a given continuous query.
A factory may also contain (parts of) query plans from more than one query.
For simplicity assume for now that each factory contains the complete plan of
a single query.

Each factory has at least one input and one output basket. It continuously
reads data from the input baskets, processes it and creates results which places in
its output baskets. Each time a tuple ¢ is being consumed from an input basket
B (i.e., it is processed and it is not needed anymore), the factory removes t from
B to avoid reading it again. We revisit these choices later on, when we discuss
more complex processing schemes in Section 3.3.

A factory can also access persistent tables, deriving data from there and/or
modifying their content. This feature is provided in the most natural way, since
our base architecture is a DBMS. In this way, we can support query scenarios
that require analysis of streaming and persistent data.

Having introduced the basic DataCell components, we can now consider
how they interact at a higher level using Figure 3.1 as an example. A receptor
captures incoming tuples and places them in basket B;. Then, a factory that
contains the full query plan of continuous query (Q processes the streaming data
in B; and the persistent data in table T. Subsequently, it places all qualifying
tuples in the outer basket By where the emitter can finally collect the results
and deliver them to the client.

In general, at any point in time, multiple receptors wait for incoming tuples
and place them into the disjoint baskets. A scheduler handles multiple factories
that read these input baskets and place results into multiple output baskets
where multiple emitters feed the interested clients with results. It is a multi-
threaded architecture, where every single component (i.e., receptors, emitters
and the factory scheduler) is an independent thread. Figure 3.2 illustrates an
overview of the DataCell architecture, with all the participant components de-

64 CHAPTER 3. DATACELL ARCHITECTURE

Front-end saL SQL (Continuous/) Query i
i [Query Parser/)+ continuous] i
i Receptors Compiler j query Emitters | |
i m - + DataCell i
| } CQuery Opt|m|zer> optimizer) |
Back-end ! :‘ ! :
} Continuous Query Scheduler |
\MAL |

i(MonetDB Assemble Language

MAL Interpreter i
Kernel |

O o W O

,,,

Figure 3.2: MonetDB/DataCell Architecture

scribed above and the extensions of the underlying MonetDB system. DataCell
components are positioned between the MonetDB SQL compiler /optimizer and
the DBMS kernel. The SQL compiler is extended with a few orthogonal lan-
guage constructs to recognize and process continuous queries (see Chapter 4).
The query plan as generated by the SQL optimizer is rewritten to a continuous
query plan and handed over to the DataCell scheduler. In turn, the scheduler
handles the execution of the plans.

Let us now describe the factories concept in more detail. A factory is a
function containing a set of MAL operators corresponding to the query plan of
a given continuous query. A factory is specified as an ordinary function; the

3.2. THE DATACELL ARCHITECTURE 65

Algorithm 1 The factory for a continuous query that selects all values of
attribute X.a in range v1-vs.

1: input = basket.bind(X.a)

2: output = basket.bind(Y.a)

3: while true do

4: basket.lock(input)

5. basket.lock(output)

6: result = algebra.select(input,vl,v2)

7. basket.empty(input)
8: basket.append(output,result)

9: basket.unlock(input)
10: basket.unlock(output)
11: suspend()

difference is that its execution state is saved between calls and that it permits
re-entry other than by the first statement. Submitted queries are transformed
to factories and the DataCell scheduler is responsible to trigger their execution
(to be discussed below).

The first time that the factory is called, a stack frame is created in the
local system to handle subsequent requests and synchronizes access. Its status
is being kept around and the next time it is called it continues from the point
where it stopped before. In Algorithm 1, we give an example of the factory
DataCell constructs for the following simple range single stream continuous
query, expressed in SQL-like syntax.

(q1) INSERT INTO Y (a)
SELECT X.a
FROM X
WHERE X.a BETWEEN v1 and v2;

In query ¢1, we filter out all these tuples from stream X that their attribute
value X.a is between the values (v1,v2). The query feeds the qualifying tuples
to stream Y.

The factory in Algorithm 1 contains the full query plan (in this case just a
single operator in line 6) where the original MonetDB operators are being used.

66 CHAPTER 3. DATACELL ARCHITECTURE

In particular, we use the select operator that belongs in the algebra module.
The modules represent a logical grouping and they provide a name space to
differentiate similar operations.

Essentially the factory contains an infinite loop to continuously process in-
coming data. Each time it is being called by the scheduler, the code within the
loop executes the query plan. Then, it is put to sleep until it receives a wakeup
call again from the scheduler; it continues at the point where it went to sleep.

Careful management of the baskets ensures that one factory, receptor or
emitter at a time updates a given basket. In this way, as seen in Algorithm 1,
the loop of the factory begins by acquiring locks on the relevant input and
output baskets (line 4 and 5 respectively). The locks are released only at the
end of the loop just before the factory is suspended. Both input and output
baskets need to be locked exclusively as they are both updated, i.e., (a) the
factory removes all tuples seen so far from the input baskets so that it does not
process them again in the future to avoid duplicate notifications and (b) it adds
result tuples to the output baskets. In the case of (sliding) window queries, only
the tuples outside the current window are removed from the basket. In Chapter
5, we study and analyze in detail how to bring incremental stream processing
for sliding window queries in the context of DataCell.

3.3 Query Processing

The previous section presented the basic components of the DataCell architec-
ture. In this section, we focus on the interaction of these components in order
to achieve efficient and scalable continuous query processing. In addition, we
discuss further alternative directions that open the road for challenging research
opportunities.

3.3.1 The DataCell Processing Model

The DataCell architecture uses the abstraction of the Petri-net model (Peterson,
1977) to facilitate continuous query processing. A Petri-net is a mathematical
representation of discrete distributed systems. It uses a directed bipartite graph
of places and transitions with annotations to graphically represent the structure
of a distributed system. Places may contain (a) tokens to represent information
and (b) transitions to model computational behavior. Edges from places to
transitions model input relationships and, conversely, edges from transitions to
places denote output relationships.

3.3. QUERY PROCESSING 67

Select *
from X,Y
Where X.b>Y.b;
Factory
Q Q tansition Receptor
— Emitter
/ place O Baskets
Select * Select * token = Tuple
from X from Y
Where X.a>10; Where Y.a<100;

—

transition
/" token Q

place

Figure 3.3: Petri-net Example

A transition fires if there are tokens in all its input places. Once fired, the
transition consumes the tokens from its input places, performs some processing
task, and places result tokens in its output places. This operation is atomic,
i.e., it is performed in one non-interruptible step. The firing order of transitions
is explicitly left undefined.

An advantage of the Petri-net model is that it provides a clean definition
of the computational state. Furthermore, its hierarchical nature allows us to
display and analyze large and small models at different scales and levels of
detail.

In Figure 3.3, we show the mapping between the Petri-net and the Data-
Cell components. Baskets are equivalent to Petri-net token place-holders while
receptors, emitters and factories represent Petri-net transitions. Following the
Petri-net model, each transition has at least one input and at least one output.

Each receptor has as input the stream it listens to and as output one or more
baskets where it places incoming tuples. The user that sets up an application
scenario, needs to specify the source of the data stream (e.g., which port the
receptor listens to) and the target, where the receptor continuously appends the
incoming data.

Each factory has as input one or more baskets from where it reads its input
data. These baskets may be the output of one or more receptors or the output

68 CHAPTER 3. DATACELL ARCHITECTURE

of one or more different factories or mixed. The output of a factory is again one
or more baskets where the factory places its result tuples.

Each emitter has as input one or more baskets that represent output baskets
of one or more factories. The output of the emitter is the delivery of the result
tuples to the clients representing the final state of the query processing chain.

The firing condition that triggers a transition (receptor, emitter or factory)
to execute is the existence of input, e.g., at least one tuple exists in B, where
B is the input basket of the transition. After an input tuple has been seen by
all relevant transitions, it is subsequently dropped from the basket so that it is
not processed again.

The DataCell kernel contains a scheduler to organize the execution of the
various transitions. The scheduler runs an infinite loop and at every iteration
it checks which of the existing transitions can be processed by analyzing their
inputs. As a first approach the DataCell scheduler continuously re-evaluates
the input of all transitions, implementing the round-robin algorithm; in the
next section we study some alternative customized processing strategies (see
Section 3.3.2).

In general, in order to accommodate more flexible processing schemes, the
system may explicitly require a basket to have a minimum of n tuples before
the relevant factory may run. For example, this is useful to enhance and control
batch processing of tuples as well as in the case of certain window queries, e.g.,
a window query that calculates an average over a full window of tuples needs
to run only once each window is complete. This may be achieved at the level
of the scheduler for tuple-based window queries or at the level of the factory in
the case of time-based queries, i.e., by plugging in auxiliary baskets that check
the input for the window properties.

When a transition has multiple inputs, then all inputs must have tuples for
the transition to run. In certain cases, to guarantee correctness and avoid un-
necessary processing costs, auxiliary input/output baskets are used to regulate
when a transition runs. Assume for example a sliding window join query ¢, with
two input baskets By and B that reflect the join attributes. Every time ¢ runs,
we need to only partially delete the inputs as some of the tuples will still be
valid for the next window. At the same time, we do not want to run the query
again unless the window has progressed, i.e., new tuples have arrived on either
input. Adding a new auxiliary input basket Bj solves the problem. The new
basket is filled with a single tuple marked true every time at least one new tuple
is added to either By or By and is fully emptied every time ¢ runs.

3.3. QUERY PROCESSING

Separate Baskets

69

DataCell

s e @ —(Fom) ———(B)——(——O |

a)
Shared Baskets
DataCell
Data
Stream
b)
Partial Deletes
DataCell
i ® : @)/,O
Data |] 1
Stream 5 e o @ @ @ E
c) b i

Figure 3.4: Examples of alternative processing schemes

70 CHAPTER 3. DATACELL ARCHITECTURE

3.3.2 Processing Strategies

Up to now, for ease of presentation, we have described the DataCell in a very
generic way in terms of how the various components interact. The way factories
and baskets interact within the DataCell kernel defines the query processing
scheme. By choosing different ways of interaction, we can make the query pro-
cessing procedure more efficient and more flexible. In this section, we discuss our
first approach to validate the feasibility of the DataCell vision and subsequently
we point to further challenging directions.

Separate Baskets

Our first strategy, called separate baskets, provides the maximum independence
to each query. Each continuous query is fully encapsulated within a single
factory. Furthermore, each factory F; has its own input baskets that only F;
accesses to read and update, without the need of concurrency control. The
latter has the following consequences. In the case that k factories, where k > 1,
are interested in the same data, then this data has to be placed in more than
one baskets upon arrival into the system, i.e., the data has to be replicated
k times, once for each relevant factory. This is done by automatically inject
a copy factory between the submitted factories and the original data source.
The benefit is that the factories can run completely independently, avoiding
any conflict of interest situation, without the need to carefully schedule their
accesses on the baskets. An example is given in Figure 3.4(a).

By exploiting the flexibility of building on top of a column-store, we can
minimize the overhead of the initial replication needed since the system handles
and stores the data one column/attribute at a time. For example, depending
on the workload there may be less I/O and memory bandwidth requirements.
In this way, if a factory is interested in two attributes a, b of stream S, then we
need to copy in its baskets only the columns a and b and not the full tuples of
S containing all attributes of the stream.

Shared Baskets

The first strategy, described above, is the baseline to study the properties and
the potential of DataCell. Our second strategy, called shared baskets, makes
a first step towards exploiting query similarities. The motivation is to avoid
the initial copying of the first strategy by sharing baskets between factories.
Each attribute from the stream is placed in a single basket B and all factories
interested in this attribute have B as an input basket.

3.3. QUERY PROCESSING 71

Naturally, sharing baskets minimizes the overhead of replicating the stream
in many baskets. In order to guarantee correct and complete results, the next
step is to regulate the way factories access their input baskets such that a tuple
remains in its basket until all relevant factories have seen it. Thus, the shared
basket strategy steps away from the decision of forcing each single factory to
remove the tuples it reads from an input basket after execution based on the
semantics of the respective query.

To achieve the above goal, for every basket B which shared as input between
a group of k factories, we add two new factories, the locker and the unlocker. An
example is shown in Figure 3.4(b). The locker factory, Lock, is placed between B
and the originally attached factories (i.e., submitted continuous queries). Once
B contains a number of new tuples, Lock runs. Its task is to simply lock B.
The output of Lock is k baskets, one for each waiting factory, i.e., Lg1, Lpa,
..., Lrpg. In each one of these outputs, Lock writes a single tuple containing
a bit attribute marked “true”. Then, all factories can read and process B but
without removing any tuples. Every factory F; has an extra output basket,
apart from the expected result basket, where it writes a single bit attribute to
mark that its execution over the locked version of the input basket B is over.
In Figure 3.4(b) this is shown as Ug;. These output baskets are inputs to the
unlocker factory Unlock. The task of Unlock is that once all factories have
seen the content of the input basket i.e., once all output baskets Up1, Upa, ...,
Urk are marked, it removes from B all tuples covered by the semantics of the
factories, and subsequently it unlocks B so that the receptor can insert new
tuples.

This strategy entails that if N factories share one basket B, then DataCell
needs to wait until all N factories finish reading B. Only then, we can apply
deletes and move on to the next data batch. These observations make the
shared baskets strategy more appropriate for “delete all” queries, or sliding
window queries with the same sliding step.

Using this simple scheme, we can use shared baskets and exploit common
query interests. It nicely shows that the DataCell model is generic and flexi-
ble. Furthermore opportunities may come by exploiting recent techniques and
ideas for sharing retrieval and execution costs of concurrent queries in databases
(Harizopoulos et al., 2005).

Further ideas for sharing data streams. Another way to achieve data
stream sharing among co-existing continuous queries, is to follow a differential
approach. The idea is that apart from the original basket that constitutes the
common input source for multiple factories, each factory maintains a separate
set of arrays, i.e., one array for each basket column. In each auxiliary basket

72 CHAPTER 3. DATACELL ARCHITECTURE

the factory marks the tuples it has already consumed. Thus, every time the
scheduler triggers a factory, it should first merge the two different versions of
its input baskets. More precisely, each factory should merge the original basket
which is the same for every interested factory and the expiration basket which is
unique for every factory. In this way, a factory always gets all valid tuples and
then it can continue with the rest of the query evaluation steps. In this scheme,
a garbage collector should have access to both the input basket and to all the
factory baskets that maintain the expired tuples of the co-existing continuous
queries. This is necessary such that it can periodically clean the tuples that are
not useful any more by any query, lightening the total storage space.

This direction is not further explored in this thesis. We discuss it here as a
valid alternative way to explore data stream sharing by slightly modifying the
underlying MonetDB processing scheme. Our intuition is that this scheme would
be appropriate for application scenarios with relatively low update rates of data
streams and continuous queries with high commonality on tuple expiration (i.e.,
rate and value wise).

Partial Deletes

The shared baskets strategy, described above, removes the tuples from a shared
input basket only once all relevant factories have seen it. The next strategy
is motivated by the fact that not all queries on the same input are interested
in the same part of this input. For example, two queries ¢; and g might be
interested in disjoint ranges of the same attribute. Assume ¢; runs first. Given
that the queries require disjoint ranges, all tuples that qualified for ¢; are for
sure not needed for ¢go. This knowledge brings the following opportunity; g; can
remove from B all the tuples that qualified its basket predicate and only then
allow gy to read B. The effect is that ¢, has to process less tuples by avoiding
seeing tuples that are already known not to qualify for g5. All we need is an
extra basket between ¢; and ¢ so that go runs only after ¢;. Figure 3.4(c)
shows an example where three queries, encapsulated in F'1, F'2 and F'3 factories
respectively, create such a chain. Each factory proceeds to the query execution,
appending tuples to its attached output basket, and in parallel leaves behind
the left-overs of its input, e.g., B’ C B.

This strategy opens the road for even more advanced ways of exploiting query
commonalities. For example, the idea to incrementally build indices based on the
particular needs of each continuous query follows the philosophy of the partial
deletes mechanism we described above. There, we could choose when it is worth
to build an index on streaming data, e.g., as in (Idreos, 2010) where indices are

3.3. QUERY PROCESSING 73

build during the execution stage, which will also be valuable for the queries we
are going to execute afterwards. We have not covered these techniques in this
thesis, but it is an interesting future research direction.

3.3.3 Research Directions

In the previous subsection we introduced a number of different processing strate-
gies and discussed how they do fit in the DataCell model. The goal of this chap-
ter is not to propose the ultimate processing scheme. We introduce the DataCell
model and argue that it is a promising direction that opens the road for a wide
area of research directions under this paradigm. There is a plethora of possibil-
ities one may consider regarding the processing strategies in data streams, e.g.,
(Sharaf et al., 2008).

The most challenging directions in our context come from the choice to split
the query plan of a single query into multiple factories. The motivation to
do this may come from multiple different reasons. For example, consider the
shared baskets strategy. Each factory in a group of factories sharing a basket,
will conceptually release the basket only after it has finished its full query plan.
Assume two query plans, a simple (lightweight) query ¢; and a quite complex
(heavy) query g2 that needs a considerable higher amount of processing time
compared to q;. With the shared baskets strategy we force g; to wait for ¢
to finish before we can allow the receptor to place more tuples in the shared
basket so that ¢; can run again. A simple solution is to split a query plan
into multiple parts so that the part that needs to read the basket becomes a
separate factory. This way, the basket can be released once a factory has loaded
its tuples, effectively eliminating the need for a fast query to wait for a slow
one.

Another natural direction that comes to mind once we decide to split the
query plans into multiple factories is the possibility to share not only baskets, but
also execution cost. For example, queries requiring similar ranges in selection
operators can be supported by shared factories that give output to more than
one query’s factories. Auxiliary factories can be plugged in to cover overlapping
requirements.

74 CHAPTER 3. DATACELL ARCHITECTURE

3.4 Optimizer Pipeline and DataCell Implemen-
tation

One essential part of every data management system is the optimization phase.
The query optimizer is responsible for finding the most appropriate query plan,
i.e., the proper way to execute a query. Then the execution engine is responsible
for actually evaluating a query over the proper data.

In this section, we discuss in more detail the optimization steps in our Mon-
etDB experimentation platform and we pinpoint on the design changes needed
for DataCell. DataCell receives a one-time query plan which is produced by the
MonetDB optimizer and it transforms it to a continuous query plan. It achieves
this by introducing new optimization rules and transformations. The transfor-
mations required for the first reevaluation-based design of DataCell are quite
simple. More advanced transformations are required to support incremental
and window query processing. Those are discussed in Chapter 5.

The code produced by MonetDB/SQL is passed and massaged by a series
of optimization steps, denoted as an optimizer pipeline, as we discussed in Sec-
tion 2.7. Each pipeline consists of a sequence of MAL function calls that inspect
and transform the plan. The final result of the optimizer steps is what it is sub-
mitted to the execution engine.

The basic DataCell optimizer pipeline is the following:

datacell_pipe=inline,remap,evaluate,costModel,coercions,emptySet,
aliases,deadcode,constants,commonTerms,datacell,emptySet,aliases,
deadcode,reduce, garbageCollector,deadcode,history,multiplex

The interested reader can refer to MonetDB documentation (MonetDB,
2012) for further analysis of each individual optimization rule. For example,
the costModel optimizer inspects the SQL catalog for size information, the
deadcode removes all code not leading to used results, the reduce optimizer
reduces the stack space for faster calls, and the emptySet removes empty set
expressions. Note that most of these rules in the above pipeline are optimiza-
tions we also use in the traditional OLAP scenario where we handle one-time
queries.

In MonetDB, the optimizer pipelines contain dependencies. For example,
it does not make much sense to call the deadcode optimizer too early in the
pipeline, although it is not an error.

The datacell optimization set of rules is exclusively created to cover the
needs of the continuous query scenario. Its main role is to transform a one-time

3.5. EXPERIMENTAL ANALYSIS 75

query plan to a continuous query plan. The main actions it takes are as follows.

e It wraps the MAL plan in a factory (see Section 3.2.3 and Algorithm 1).

e It adds in the proper place of the MAL plan the infinite loop that guaran-
tees continuous query processing. Instructions that should be evaluated
only once, such as basket binds, remain outside the loop.

e It plugs in the appropriate data cleaning instructions for proper tuple
expiration.

e It introduces the locking and unlocking scheme for the source and target
baskets of the query.

e It discards the unnecessary (secondary) arrays that by default represent
the deletions and updates of each column in MonetDB. In addition, it
cleans the corresponding commands that the discarded arrays participate
(explicitly and implicitly).

Any optimizer in MonetDB, once it is called needs to traverse the MAL plan
and collect information to local data structures that it uses to modify the input
plan. In some cases, some information is passed from one optimizer to another
for further analysis.

At this level, the datacell optimizer is only responsible to implant stream-
ing functionalities in a normal query plan. In Chapter 5, we show how we
extended the optimization phase with new set of rules in order to support in-
cremental stream processing for sliding window queries.

3.5 Experimental Analysis

In this section, we report on experiments using our DataCell implementation on
top of MonetDB v5.6. All experiments are on a 2.4GHz Intel Core2 Quad CPU
equipped with 8GB RAM. The operating system is Fedora 8 (Linux 2.6.24). Our
analysis consists of two parts, (a) an evaluation of the individual parts of the
DataCell using micro-benchmarks to assess specific costs, and (b) an evaluation
of the system at large using the complete Linear Road benchmark (Arasu et al.,
2004).

76 CHAPTER 3. DATACELL ARCHITECTURE

3.5.1 Micro-benchmarks

A stream-based application potentially involves a large number of continuous
queries. To study the basic DataCell performance, we first focus on a simple
topology, called Query chain, to simulate multi-query processing of continuous
queries inside the DataCell. An example is given in Figure 3.5. It reflects a
situation where the most general query is evaluated first against the incoming
tuples. Then, it passes the qualifying tuples to the next query in the pipeline,
which is less general and so on.

Metrics

Our metrics are the following. We measure the average latency per tuple, i.e.,
the time needed for a tuple to pass through all the stages of the stream network.
Thus, the latency L(t) of a tuple t is defined as L(t) = D(t) — C(t), where C(t)
is the time on which the sensor created ¢, while D(¢) is the time on which the
client received t.

In addition, we measure the elapsed time per batch of tuples. For a batch b
of k tuples this metric is defined as E(b) = D(t;) — C(t1) where t; is the first
tuple created for b and t; is the last tuple of b delivered to the client.

Finally, we measure the throughput of the system which is defined as the
number of tuples processed by the system divided by the total time required.

Interprocess Communication Overhead

Targeting real-world application, it is not sufficient to focus only on the per-
formance within the kernel of a stream engine. Communication costs between
devices controlling the environment, e.g., sensors, clients and the kernel have
a significant impact on the effectiveness and performance. For this reason, we
experiment with a complete pipeline that includes the cost of the data shipping
from and to the kernel.

We implemented two independent tools, the sensor and the actuator. The
sensor module continuously creates new tuples, while the actuator module sim-
ulates a user terminal or device that posed one or more continuous queries and
is waiting for answers. The sensor and the actuator connect to the DataCell
through a TCP/IP connection. They run as separate processes on a single
machine.

In the following experiment, we measure the elapsed time and the throughput
while varying the number of queries. The sensor creates 10° random two-column
tuples. For each tuple ¢, the first column contains the timestamp that this tuple

3.5. EXPERIMENTAL ANALYSIS 7

(e s>
() @ () —~[ri>

Figure 3.5: The Query Chain topology

was created by the sensor, while the second one contains a random integer value.
We use simple SELECT * queries. Thus, within the kernel every query passes all
tuples to the next one which reflects the worst case scenario regarding the data
volume flowing through the system.

Given that we have separate sensor and actuator processes, the time metrics
to be presented include (a) the communication cost for a tuple to be delivered
from the sensor to the DataCell, (b) the processing time inside the engine and (c)
the communication cost for the tuple to be sent from DataCell to the actuator.
To assess the pure communication overhead, we also run the experiments by
removing the DataCell kernel from the network. This leaves only the sensor
sending tuples directly to the actuator.

Figure 3.6(a) depicts the elapsed time. It increases as we add more queries
in the system and grows up to 200 milliseconds for the case of 64 queries. The
flat curve of the sensor to actuator experiment demonstrates that a significant
portion of this elapsed time is due to the communication overhead. The less
work the kernel has to do, the higher the price of the communication overhead
is, relative to the total cost.

In addition, Figure 3.6(b) shows. that the maximum throughput we achieve
simply by passing tuples from the sensor to the actuator is around 2.2 * 10* tu-
ples/sec. Naturally, with the DataCell kernel included in the loop the through-
put significantly decreases. Again the larger the number of queries in the system,
the lower the throughput becomes.

Pure Kernel Activity

At first sight the performance figures discussed above do not seem in line with
common belief. Unfortunately, the literature on performance evaluation of

78

Elapsed time (millisecs)

Latency per tuple (microsecs)

200 -

100

0.1

CHAPTER 3. DATACELL ARCHITECTURE

With the kernel

Q
Without the kernel —6—

Throughput (1 0® tuples/sec)

32
of queries

64

24

22

20

18

16

14

12

10

Figure 3.6: Effect of inter-process

B V. ALLLA

=10° quer.
102 quer.

T A
. 10 quer.A

| | | A | 1

110 10® 10° 10*
Batch size (# of tuples)

120

100

80

60

40

20

T T T T
Without the kernel —&—

< 5

b) With the kernel

1 1 1 1
8 16 32 64

of queries

communication

" Separate baskets —H—
Partial deletes
Shared baskets ---A--- _

256 1024
of queries

Figure 3.7: Effect of batch processing and strategies

3.5. EXPERIMENTAL ANALYSIS 79

stream engines does not yet provide many points of reference. GigaScope (Cra-
nor et al., 2003) claims a peak performance up to a million events per second
by pushing down selection conditions the Network Interface Controller. On
the contrary, early presentations on Aurora report on handling around 160K
msg/sec. Comparing Aurora against a commercial DBMS, systemX, the sys-
tems show the capability to handle between 100 (systemX) and 486 (Aurora)
tuples/second (Arasu et al., 2004). Two solutions for systemX are given, one
based on triggers and stored procedures, and another one based on polling.

Most research papers in the literature for data stream system evaluation ig-
nore the communication overhead demonstrated above. The message through-
put is largely determined by the network protocol, i.e., how quickly can we get
events into the stream engine. To measure the performance of the pure DataCell
kernel without taking into account any communication overheads, we use the
query chain topology. Our experiments show that each factory can easily han-
dle 7 * 10° events per second. These numbers are in-line with the high-volume
event handling reported by others in similar experiments, i.e., without taking
into account communication costs. The interesting observation is that there is
a slack time due to this overhead and the system can exploit this time in many
ways, e.g., creating various indices, collecting statistics, etc.

Batch Processing

Here, we demonstrate the effect of batch processing within the DataCell engine
using the separate baskets architecture. We set up the experiment as follows.
105 incoming tuples are randomly generated with a uniform distribution. Each
tuple contains an attribute value randomly populated in [0,100] and a timestamp
that reflects its creation time. All queries are single stream, continuous queries
of the following form.

SELECT S.a
FROM 8
WHERE vl < S.a < v2

All queries select a random range with 10% selectivity. Figure 3.7(a) depicts
the average latency per tuple for various different numbers of installed queries
and while varying the batch size (T') used in query processing. The case of
T = 1 demonstrates the impact of the traditional processing model of handling
one tuple at a time. We clearly see that the latency significantly decreases as
we increase the batch size materializing a benefit of roughly three orders of
magnitude. An important observation is that the benefits of batch processing

80 CHAPTER 3. DATACELL ARCHITECTURE

increase with a higher rate up to a certain batch size and then the improvement
is much less. When the batch size becomes very big, performance starts to
degrade especially for the case of the maximum number of queries. This is due
to the delay time needed, i.e., the average time a tuple has to wait for more
tuples to arrive so that the desired batch size is reached. Only then the tuples
can be processed. However, there is a point that this delay time becomes so
big that overshadows the benefits of grouped processing, i.e., performance does
not improve anymore or even degrades. In our experiment this point appears
at T = 103. Optimally setting and adapting the batch size depending on the
queries and system status is an open research problem.

Alternative Strategies

Let us now study the various query processing strategies discussed in Section
3.3.2. The previous experiment used the basic separate baskets approach. Here,
we demonstrate the benefits of using alternative strategies, i.e., shared baskets
and partial deletes. The set-up is similar to the previous experiment but this
time the batch size is constant at 7" = 103.

Figure 3.7(b) presents the results for various different numbers of installed
queries. Naturally, the two alternative strategies significantly outperform the
basic separate baskets approach. The reason is that both these strategies avoid
the procedure of creating the extra baskets which requires to replicate the stream
data at multiple locations once for each query. The higher the number of queries
in the system, the bigger the benefit. Furthermore, the shared baskets approach
achieves much better performance, than partial deletes especially as the number
of queries increases. This time the reason is that the shared baskets approach
is a more lightweight one regarding basket management. With partial deletes,
every query needs to modify its input basket to remove tuples that the next
query does not need. Although the next query can execute much faster due to
analyzing less data, the overhead of continuously modifying and reorganizing
the baskets is significant to overshadow a large portion of this benefit. On the
other hand, the shared baskets approach does not need to modify the data at
all. Only once all queries are finished, then the appropriate tuples are removed
from the input baskets in one simple step.

3.5.2 The Linear Road Benchmark

In this section, we analyze the performance of our system using the Linear
Road benchmark (Arasu et al., 2004). This is the only well-known benchmark

3.5. EXPERIMENTAL ANALYSIS 81

developed for testing stream engines. It is a very challenging and complicated
benchmark due to the complexity of the many requirements. It stresses the
system and tests various aspects of its functionality, e.g., window-based queries,
aggregations, various kinds of complex join queries; theta joins, self-joins, etc.
It also requires the ability to evaluate not only continuous queries on the stream
data, but also historical queries on past data. The system should be able to store
and later query intermediate results. Due to the complexity, only a handful of
implementations of the benchmark exist so far. Most of them are based on a
low level implementation in C which naturally represents a specialized solution
that not clearly reflects the generic potential of a system. In this chapter, we
implemented the benchmark in a generic way using purely the DataCell model
and SQL. We created numerous SQL queries that interact with each other via
result forwarding (details are given below).

The Benchmark

Let us now give a brief description of the benchmark. It simulates a traffic
management scenario where multiple cars are moving on multiple lanes and on
multiple different parallel roads. In Linear City each expressway has four lanes
in east and west direction. In three middle lanes of each direction cars are trav-
eling, while the external lane is devoted to entrance and exit to the expressway.
Each expressway is 100 miles-long and consists of 100 equally divided segments
of 1 mile long each. Figure 3.8 illustrates an example segment, as it was origi-
nally presented by the authors of the Linear Road Benchmark. Every vehicle is
equipped with a sensor that emits its exact position every 30 seconds. The sys-
tem is responsible to monitor the position of each car. It collects and analyzes
the incoming position reports, to create statistics about traffic conditions on
each segment, of each expressway, for every minute or to immediately detect an
accident when occurs. An accident is detected when two or more cars are in the
same position for 4 continuous timestamps. Based on these statistics it dynam-
ically determines the toll rates and charges each individual driver the relevant
amount. In addition, the system needs to continuously monitor historical data,
as it is accumulated, and report to each car the account balance and the daily
expenditure. Furthermore, the benchmark poses strict time deadlines regarding
the response times which must be up to X seconds, i.e., an answer must be
created at most X seconds after all relevant input tuples have been created. X
is 5 or 10 seconds depending on the query (details below).

The benchmark contains a tool that creates the data and verifies the results.
The data of a single run reflects three hours of traffic, while there are multiple

82 CHAPTER 3. DATACELL ARCHITECTURE

Lane 4 (Exit) \ / Lane 0 (Entrance)

— Lane 1 (Travel)

<—— Lane 3 (Travel)
Lane 3 (Travel) —pp

e Lene2(Travel) > __
Lane 1 (Travel) —_—
Lane 0 (Entrance) ~ >~ "\ * Lane 4 (Exit)
1 mile
oo >

Figure 3.8: Expressway Segment in LRB (Arasu et al., 2004)

scale factors that increase the amount of data created for these three hours, e.g.,
for scale factor 0.5 the system needs to process 6 % 10% tuples, while for scale
factor 1 we need to process 1.2 % 107.

Implementation in the DataCell

Our implementation of the benchmark was done completely in SQL and by
exploiting the power of a modern DBMS. We translated the requirements of
the benchmark in the form of a quite complex group of numerous SQL queries.
The original queries can be found in the validator tool of the benchmark. We
modified the queries into DataCell continuous queries. In particular there are
38 queries, logically distinguished in 7 different collections (Q1-Q7). Figure 3.9
gives a high level view of the various collections and the number of queries within
each one. The interested reader could refer to the sources of the benchmark,
as they are provided by the authors (Linear Road Benchmark, 2012). There
are numerous complex queries, e.g., self-join queries, theta join queries, nested
queries, aggregation, sliding window queries, etc. Only four of the query collec-
tions are output queries, i.e., @4, @5, Q6 and Q7 which create the final results
requested by the benchmark. The rest process the data and create numerous
intermediate results that pass from one query to another until they reach one
of the output queries.

In order to verify the baseline of our approach and keep the implementation

3.5. EXPERIMENTAL ANALYSIS

Q2 Accidents

<Stopped >_>< Create >__
Cars Accidents - Q4

3 queries

Qs Statistics\.5 guerie:
_>< Calculate) Calculate> ~ o
Speed # of Cars éStatistiCS'
5 queries
Input
Stream
I H
Account Balance i Account Balance
Requests : Answers
Rl =

Filter by type ~
(2,3)

Daily Expenditure

2 queries /""" Requests
i Daily Expenditure
. - Q6 Answers
AN - -——
I~ Daily Balance
""""""" 1 query

Figure 3.9: Linear Road benchmark in DataCell

84 CHAPTER 3. DATACELL ARCHITECTURE

simple, given the complexity of the benchmark, as a first step each collection of
queries becomes a single factory. It takes its input from another query collection
and gives its output to the next collection. Within each query collection the
individual queries form a simple pipeline, while as seen in Figure 3.9, a query in
one collection might have multiple inputs from different collections. Regarding
the time deadlines, the output collections Q4, @5 and @7 have a 5 seconds goal
while Qg has a 10 second goal.

To verify the feasibility of the DataCell approach, as a first step, we purely
exploited the functionality provided by the DBMS using operators provided by
the system to handle the various columns. These operators have been developed
for use in the pure DBMS arena. Early analysis showed that a number of new
simple operators can increase the performance up to 20-30%. This was mostly
in the cases of the operators used to remove tuples from a basket. Due to the
complexity of the benchmark, there are numerous cases where we do not need
to simply empty a basket. Instead we need to selectively remove tuples based
on numerous restrictions, e.g., window-based queries, multiple queries needing
the same data but with different restrictions, etc. To achieve the required func-
tionality, we often had to combine 3-4 operators which introduces a significant
delay by processing the same column over and over again. In most of the cases,
creating a new operator, that, for example, in one go removes a set of tuples
by shifting the remaining tuples in the positions of the deleted ones, gives a
significant boost in performance.

Evaluation

Let us now proceed with the performance results. Figure 3.11 shows the per-
formance during the whole duration of the benchmark (three hours) for scale
factor 1. Graph 3.11(a) shows the total number of tuples entered the system at
any given time while the rest of the graphs show the processing time needed for
each query collection. Each time a collection of queries runs, i.e., because there
was new input for its first query, then all its queries will run, one after the other,
if the proper intermediate results are created. One, some or even all its queries
may run in one go depending on the input. The graphs in Figure 3.11 depict the
response time for each query collection Q);, every time (); was activated through
the three hours of the benchmark.

The first observation is that the response time is kept low for all queries.
Most of the collections need much less than one second with query collection 7
being the most resource consuming. It contains 18 complex queries with multiple
join and window restrictions. For most of the query collections, we observe that

3.5. EXPERIMENTAL ANALYSIS 85

1

Q2 load (millisecs) Q1 load (millisecs) Total tuples entered

Q8 load (millisecs)

2+10°

(o]
*

—_

o
[e)]

60

100

200
150
100
50
0

d)] PN
- + ++ T
+ 4+ ++++ JL}#+ i -
- +4+ +
ha + + 4+ 4+ 4+ +
L+ 7 + n R St
+#4iq+4=Hr + + m
- + + R A
R, il

=
+ ++ﬁ#+++++ﬁ* T
- 4 e

M
0 20 40 60 80 100 120 140 160 180

Time (minutes)
Figure 3.10: System load for each query collection (Q1-Q3)

86

Q5 load (millisecs) Q4 load (millisecs)

Q6 load (millisecs)

Q7 load (millisecs)

w
o

N
o

—_
o

250
200
150
100

50

300

200

100 |

2000

1500

1000

500

CHAPTER 3. DATACELL ARCHITECTURE

+

+

4 T

e
W+| L

N i
+
4+
+ +
+
7 + o+ + F + 4
+ + .+ + n H
+ + - + + +
o+ it #+++ TS
+ ++ o t +
+ +1 + + + ++
LT S, T +
= -
++ 4 + o+ +

0 20

Figure 3.11

80 100 120 140 160 180
Time (minutes)

: System load for each query collection (Q4-Q7)

3.5. EXPERIMENTAL ANALYSIS 87

00T | | | | Scéle fact6r1 L
©
[
o
[&]
¢ 1500
o
o
3
< 1000]
o)
5 PR T gl iy
£ .
% 0T Scale factor 0.5 -]
£

0 1 1 1 I A | | |

0 20 40 60 80 100 120 140 160 180
Time (minutes)

Figure 3.12: Data distribution during the benchmark

the cost is increased as more data arrives. This is due to a number of reasons.
First, data and intermediate results is accumulated over time creating bigger
inputs for the various queries. Most importantly, in many cases it is the content
of the incoming data that triggers more work. For example, the second query
collection (Figure 3.11(c)) is the one detecting the accidents. With the way
data is created by the benchmark (for scale factor 1), accidents occur with
a continuously increasing frequency after one hour. This is when we see the
queries in Figure 3.11(c) to increase their workload as to compute the various
accident situations for each car, in each lane etc. In turn, these queries create
bigger inputs for the queries in the next query collections and so on.
Furthermore, the benchmark is designed in such a way that more data enters
the system, the more the time goes by. This is demonstrated in Figure 3.12
where we show the number of tuples that enter the system every second. For
example, for scale factor 1, 15 to 20 tuples per second arrive at the beginning,
while towards the end of the three hours run we get up to 1700 tuples per second.
All categories scale nicely achieving to process the extra data as the benchmark
evolves. Even the most expensive query collection, 7, manages to maintain
performance levels below 2 seconds which is well below the 5 seconds goal.

CHAPTER 3. DATACELL ARCHITECTURE

o9}
o

T T T T T T T T
1400 -
Scale factor 1 —

2

(0]

K7}

'g 1200

[O)

£ 1000

|_

o 800 [

[}

c

8 600 [

[%]

[O)

o 400

S

@ 200 [i
o Scale factor 0.5
< 0 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180
Time (minutes)

Figure 3.13: Average response time for Q7

Furthermore, Figure 3.13 depicts the average response time for query col-
lection Q7 which is one of the output results of the benchmark. This metric is
common when evaluating the benchmark, e.g., (Jain et al., 2006) as this collec-
tion defines the performance of the system by containing the most heavyweight
queries, dominating the system resources (see Figure 3.11). The average re-
sponse time is defined as the average processing time needed for the queries in
this collection. It is measured every time 10° new tuples enter this collection
by calculating the average time needed to process these 10° tuples.

Figure 3.13 shows that the response time is continuously kept low, below 1.5
seconds, even towards the end of the three hours run when data arrives at a
much higher frequency. Going from scale factor 0.5 to 1, the performance scales
nicely considering the much higher volume of incoming data.

The results observed above are similar to what specialized stream systems
report, e.g., (Arasu et al., 2004). They indicate that the DataCell model can
achieve competitive performance with a very generic implementation of the
benchmark and with the most basic system architecture. It shows that a mod-
ern DBMS can be successfully turned into an efficient stream engine. Future
research on optimization and alternative architectures is expected to bring even

3.6. SUMMARY 89

more performance, exploiting the power of relational databases but also the
stream properties to the maximum.

3.6 Summary

In this chapter, we introduced the basic DataCell architecture, a radically dif-
ferent approach in designing a stream engine. The system directly exploits
all existing database knowledge by building on top of a modern column-store
DBMS kernel. Incoming tuples are stored into baskets and then they are queried
and removed from there by multiple factories (queries/operators) waiting in the
system. Our design allows for numerous alternative ways of interaction between
the basic components, opening the road for interesting and challenging research
directions. This chapter presents the basic approaches and through a complete
implementation of the DataCell prototype, it shows that this is a very promis-
ing direction that together with the experience gained from the existing stream
literature, can lead to very interesting research opportunities.

The following chapter presents a semi-procedural query language proposed in
the context of DataCell, and in Chapter 5 we study the crucial pure stream pro-
cessing problem of incremental processing for window-based continuous queries.

90

CHAPTER 3. DATACELL ARCHITECTURE

Chapter 4

Query Language®

4.1 Introduction

In the previous chapter we presented the basic DataCell architecture. We de-
fined the new concepts introduced in our underlying kernel in order to support
efficient data stream processing. DataCell fundamentally changes the way that
data streams are handled and processed, trying to exploit many traditional
core database techniques and ideas. We implemented and ran the Linear Road
benchmark and a number of micro-benchmarks that show that our approach
to implant stream processing functionalities in the heart of a modern database
kernel is not only a realistic but also a promising direction that deserves further
study.

In this chapter, we focus on the DataCell language interface. We propose
a semi-procedural language as a small extension of SQL, that can be used to
access both streaming and database data at the same time. DataCell provides
an orthogonal extension to SQL’03, called basket expressions, which behave as
predicate windows over multiple streams and which can be bulk processed for
good resource utilization. The functionality offered by basket expressions is
illustrated with numerous examples to model complex event processing appli-
cations.

*The material in this chapter has been the basis for the EDA-PS paper “A Query Language
for a Data Refinery Cell” (Kersten et al., 2007).

91

92 CHAPTER 4. QUERY LANGUAGE

4.1.1 Contributions
The main contributions and topics addressed in this chapter are as follows.

e Predicate windows. DataCell generalizes the (sliding) window approach,
predominant in DSMSs, to allow for arbitrary table expressions over streams.
It enables applications to selectively process the stream and prioritize
event processing based on application semantics.

e SQL compliance. The language extensions proposed are orthogonal to
existing SQL semantics. We do not resort to redefinition of the WINDOW
concept, nor do we a priory assume a sequence data type. Moreover, the
complete state of the system can at any time be inspected using SQL
queries.

The stream behavior in DataCell is obtained using a small and orthogonal
extension to the SQL language. As we discussed in the previous chapter, streams
are presented as ordinary temporary tables, called baskets which are the target
for (external) sources to deposit events. Baskets carry little overhead as it comes
to transaction management. Their content disappears when the system is shut
down.

Subsequently, SQL table expressions can be marked as basket expressions,
which extract portions of interest from stream baskets or ordinary tables. It cre-
ates a tuple flow between queries, independent of the implementation technique
of the underlying query execution engine.

The benefit of the two language concepts is a natural integration of streaming
semantics in a complete SQL framework. It does not require overloading the
definition of existing language concepts, nor a focus on a subset of SQL’92.
Moreover, its integration with a complete SQL software stack from the outset
leverage our development investments.

The validity of our approach is illustrated using concepts and challenges
from the “pure” DSMS arena where light-weight stream processing is a starting
point for system design. An exhaustive list of examples provides the foundation
for comparison against the DataCell approach.

4.1.2 Outline

The remainder of this chapter is organized as follows. In Section 4.2 we introduce
the SQL enrichment in more detail. Section 4.3 explores the scope of the solution
by modeling stream-based application concepts borrowed from dedicated stream
database systems. Finally, Section 4.4 concludes the chapter.

4.2. DATACELL MODEL 93

4.2 DataCell Model

In this section we define the DataCell language components, i.e., baskets, re-
ceptors and emitters, basket expressions, and continuous queries, through its
language interface. All components are modeled with the SQL’03 language
(Eisenberg et al., 2004) with a novel extension, the basket expression, which
will also be described in this section. Together they capture and generalize the
essence of data stream applications.

4.2.1 Baskets

As we described in the previous chapter (see Section 3.2.2) the basket is the
key data structure of DataCell, that holds a portion of a stream. It is repre-
sented as a temporary main-memory table. Incoming events are just appended,
and tuples are removed from the basket when “consumed” by a query. The
commonalities between baskets and relational tables are much more important
to warrant a redesign from scratch. Therefore, their syntax and semantics are
aligned with the table definition in SQL’03.

Example 1. The basket definition below models an ordered sequence of events.
The id takes its value from a sequence generator upon insertion, a standard
feature in most relational systems nowadays. It denotes the event arrival order.
The default expression for the tag, ensures that the event is also timestamped
upon arrival. The payload value is received from an external source.

CREATE BASKET X(
tag timestamp default now(),
id serial,
payload integer

)3

Important differences between a basket and a relational table are their pro-
cessing state, their update semantics and their transaction behavior. The pro-
cessing state of a basket X is controlled with the statements ENABLE X and
DISABLE X. The default is to enable the basket to enqueue and dequeue tuples.
By disabling it, queries that attempt to update its content become blocked.
Selectively (dis)enabling baskets can be used to debug a complex stream appli-
cation.

A distinctive feature of a basket is its handling of integrity violations. Events
that violate the constraints are silently dropped. They are not distinguishable

94 CHAPTER 4. QUERY LANGUAGE

from those that have never arrived in the first place.

Furthermore, the events do not appear in the transaction log and updates
can not be “rolled-back”. Baskets are subject to a rigid concurrency scheme.
Access is strictly serialized between receiver/emitter and continuous queries. It
all leads to a light-weight database infrastructure.

The high-volume insertion rate and the short life of an event in the system
make the traditional transaction management a no-go area. With baskets as
the central concept we purposely step away from the de-facto semantics of pro-
cessing events in arrival order in most streaming systems. We consider arrival
order a semantic issue, which may be easy to implement on streams directly,
but also raises problems with out-of-sequence arrivals (Abadi et al., 2005) and
unnecessary complicates applications where the arrival order is not relevant.

4.2.2 Receptors and Emitters

As we have already defined in the previous chapter, the periphery of DataCell
consists of receptors and emitters. These separate processes connect DataCell
with the outside world. A receptor picks up streaming events from a commu-
nication channel and forwards them to the kernel for processing. Likewise, an
emitter picks up the events that constitute the answer of the continuous queries
and delivers them to clients who have subscribed to the query results.
Receptors and emitters are woven into the SQL language framework as a
variant of the SQL copY statement. The communication protocol is encoded
in the string literal which is interpreted internally. Currently, the supported
protocols are TCP-IP and UDP channels.
Example 2. The statements below collect events from the designated IP address
and deliver them to another. It is the smallest DataCell program to illustrate
streaming behavior.

COPY INTO X(payload)
FROM ’localhost:50032’;

COPY FROM X(tag,payload)
INTO ’localhost:50033’
delimiters ’,’,’\n’;

4.2.3 Basket Expressions

The basket expressions are the novel building blocks for DataCell queries. They
encompass the traditional SELECT-FROM-WHERE-GROUP BY SQL language frame-

4.2. DATACELL MODEL 95

work. A basket expression is syntactically a table expression surrounded by
square brackets. However, the semantics are quite different. Basket expressions
have side-effects; they change the underlying baskets during query evaluation.
All tuples that qualify the basket (sub-)expression are removed from the un-
derlying store immediately after they have been processed. This may leave a
partially emptied basket behind. Note that the baskets expressions exclusively
express the processing requirement of a single query at the query language level.
In case where multiple queries require access of the same basket, it is the obli-
gation of the processing engine to guarantee correctness and completeness of
continuous stream of answers. For example, by following the Separate Baskets
processing model 3.3.2 we provide source independence among concurrent con-
tinuous queries. Recall that in this scheme we provide an individual basket for
each continuous query, thus each one is free to modify its input based on its own
needs. Note, a basket can also be inspected outside a basket expression. Then,
it behaves as an append-only relational table, i.e., tuples are not removed as a
side-effect of the evaluation.

Example 3. The basket expression in the query below takes precedence and
extracts all tuples from basket X. All tuples selected are immediately removed
from basket X (i.e., the basket is emptied), but they remain accessible through
B during query execution. From this temporary table we select the payloads
satisfying the predicate.

SELECT count (*)
FROM [SELECT *

FROM X

ORDER BY id] as B
WHERE B.payload >100;

The basket expressions initiate tuple transport in the context of the query.
The net effect is a stream within the query engine. X is either a basket or a
table. Tuples are removes only in the case that X is a basket. Otherwise, the
tuples in the base table remain intact. In MonetDB, deletion from tables is
much more expensive, because it involves a transaction commit. This involves
moving the tuples deleted to a persistent transaction log. Baskets avoid this
overhead, no transaction log is maintained.

96 CHAPTER 4. QUERY LANGUAGE

4.2.4 Continuous Queries

Continuous queries are long-standing queries that we should continuously eval-
uate while new incoming stream data arrives. Conceptually, the query is re-
executed whenever the database state changes. Two cases should be distin-
guished. For a non-streaming database, the result presented to the user is an
updated result set and it is the task of the query processor to avoid running the
complete query from scratch over and over again. For a streaming database,
repetitive execution produces a stream of results. The results only reflect the
latest state and any persistent state variable should be explicitly encoded, e.g.,
using stream aggregates and singleton baskets.

In DataCell we consider every query that refers to at least one stream basket
in the FROM clause, as a continuous query.

Example 4. A snippet of a console session is shown below. The continuous
query can be stopped and restarted by controlling the underlying basket state.

CREATE BASKET MyFavored as
[SELECT *
FROM X
WHERE payload>100];

enable MyFavored;

[SELECT * FROM MyFavored];

-- part of the result set

[135, 2007-03-27:22:45, 123]
[136, 2007-03-27:22:46, 651]
[137, 2007-03-27:22:49, 133]

4.2.5 Application Modeling

The graphical user interface closely matches the network view of the flow de-
pendencies amongst the baskets, (continuous) queries, tables, and the interface
(Liarou et al., 2012b). Compared to similar tools, e.g., Borealis (Abadi et al.,
2005), the coarse grain approach of SQL as a specification vehicle pays off.

Example 5. In the previous chapter, when introducing the basic DataCell com-
ponents (see Section 3.2), we showed how they interact and synthesize a simple

4.3. QUERYING STREAMS 97

query scenario. In our basic example (Figure 3.1) a receptor R appends the new
incoming data to a basket B;. When new data appears, a submitted continuous
query @ obtains access to the incoming stream and the data in the persistent
table T', and it is evaluated. The produced results are placed in basket B, from
where the emitter can finally collect them and deliver them to the client. The
SQL-like syntax for this example is as follows.

--An Alarm Application

CREATE BASKET B1(
tag timestamp default now(),
pl integer);

COPY INTO B1 FROM ’alarms:600007;

CREATE BASKET B2(
tag timestamp,
pl integer,
msg string) ;

COPY FROM B2 INTO ’console’;

CREATE TABLE Ti1(
pmin integer,
pmax integer);

INSERT INTO B2

SELECT tag, pl, "Warning"

FROM T1, [SELECT * FROM C1 WHERE pl > 0] as A,
WHERE A.pl < Tl.pmin or A.pl > T1l.pmax;

4.3 Querying Streams

In this section, we illustrate how the key features of a query language for data
streams are handled in the DataCell model using StreamSQL (StreamSQL,
2009), as a frame of reference. Its design is based on experiences gained in
the Aurora (Balakrishnan et al., 2004) and the CQL (DBL,) in the STREAM
(Arasu et al., 2003; Babcock et al., 2004) projects. It also reflects an expe-

98 CHAPTER 4. QUERY LANGUAGE

rience based approach, where the language design evolved based on concrete
applications.

4.3.1 Filter and Map

The key operations for a streaming application are the filter and the map
operations. The filter operator inspects individual tuples in a stream removing
the ones that satisfy the filter. The map operator takes an event and constructs a
new one using built-in operators and calls to linked-in functions. Both operators
directly map to the basket expression. There are no up-front limitations with
respect to functionality, e.g., predicates over individual events or lack of access
to global tables. A simple stream filter is shown below. It selects outlier values
within batches of precisely 20 events in temporal order and keeps them in a
separate basket.

INSERT INTO outliers
SELECT b.tag, b.payload
FROM [SELECT top 20

FROM X
ORDER BY tag] as b
WHERE b.payload >100;

The TOP clause is equivalent to the SQL LIMIT clause and requires the result
set of the sub-query to hold a precisely defined number of tuples. In combination
with the ORDER BY clause applied to the complete basket before the TOP is
applied simulates a fixed-sized sliding window over streams.

4.3.2 Split and Merge

Stream splitting enables tuple routing in the query engine. It is heavily used to
support a large number of continuous queries by factoring out common parts.
Likewise, stream merging, which can be a join or gather, is used to merge
different results from a large number of common queries. Both were challenges
for the DataCell design. The first one due to the fact that standard SQL lacks
a syntactic construct to spread the result over multiple targets. The second one
due to the semantic problem found in all stream systems, i.e., at any time only
a portion of the infinite stream is available. This complicates a straight forward
mapping of the relational join, because an infinite memory is required.

The SQL’99 WITH construct comes closer to what we need for a split opera-
tion. It defines a temporary table (or view) constructed as a prelude for query

4.3. QUERYING STREAMS 99

execution. Extending its semantics to permit a compound SQL statement block
gives us the means to selectively split a basket, including replication. It is an
orthogonal extension to the language semantics. The statement below partially
replicates a basket X into two baskets Y and Z. The WITH compound block is
executed for each basket binding A.

WITH A AS [SELECT * FROM X]
BEGIN
INSERT INTO Y
SELECT * FROM A WHERE A.payload > 100;
INSERT INTO Z
SELECT * FROM A WHERE A.payload <= 200;
END;

The way out to resolve the merge operation over streams is by window-
based joins. They give a limited view over the stream and any tuple outside the
window can be discarded from further consideration. The boundary conditions
are reflected in the join algorithm. For example, the gather operator needs both
streams to have a uniquely identifying key to glue together tuples from different
streams.

In DataCell, we elegantly circumvent the problem using the basket expres-
sion semantics and the computational power of SQL. The DataCell immediately
removes tuples that contribute to a basket predicate, i.e., if the predicate is satis-
fied, it becomes true. In particular, the DataCell removes matching tuples used
in a merge predicate. This way, merging operations over streams with uniquely
tagged events are straight-forward. Delayed arrivals are also supported. Non-
matched tuples remain stored in the baskets until a matching tuple arrives, or
a garbage collection query takes control.

Below we see a join between two baskets X and Y with a monotone increasing
unique ¢d sequence as the target of the join. The join basket expression produces
all matching pairs. The residue in each basket are tuples that do not (yet) match.
These can be removed with a controlling continuous query, e.g., using a time-out
predicate. Taken together they model the gather semantics.

100 CHAPTER 4. QUERY LANGUAGE

SELECT A.x
FROM [SELECT * FROM X,Y WHERE X.id=Y.id] as A;
INSERT INTO trash [SELECT ALL

FROM X

WHERE X.tag < now()-1 hour];
INSERT INTO trash [SELECT ALL

FROM Y

WHERE Y.tag < now()-1 hour];

4.3.3 Aggregation

The initial strong focus on aggregation networks has made stream aggregations
a core language requirement. In combination with the implicit serial nature of
event streams, most systems have taken the route to explore a sliding window
approach to ease their expressiveness.

In DataCell, we have opted not to tie the concepts that strongly. Instead,
an aggregate function is simply a two phase processing structure: aggregate
initialization followed by incremental updates.

The prototypical example is to calculate a running average over a single
basket. Keeping track of the average payload calls for creation of two global
variables and a continuous query to update them. Using batch processing the
DataCell can handle such cases as shown in the following example. In this case,
updates only take place after every 10 tuples.

DECLARE cnt integer;
DECLARE tot integer;
SET tot =0;
SET cnt=0;
WITH Z AS [SELECT top 10 payload FROM X]
BEGIN
SET cnt
SET tot
END;

cnt +(select count(x) from Z);
tot +(select sum(*) from Z);

4.3.4 Metronome and Heartbeat

Basket expressions can not directly be used to react to the lack of events in
a basket. This is a general problem encountered in data stream management
systems. A solution is to inject marker events using a separate process, called

4.3. QUERYING STREAMS 101

a metronome function. Its argument is a time interval and it injects a value
timestamp into a basket.

The metronome can readily be defined in an SQL engine that supports Per-
sistent Stored Modules and provides access to linked in libraries. This way, we
are not limited to time-based activation, but we can program any decision func-
tion to inject the stream markers. The example below injects a marker tuple
every hour.

CREATE FUNCTION metronome (t interval)
RETURNS timestamp;
BEGIN
CALL sleep(t);
RETURN now();
END;
INSERT INTO into X(tag,id,payload)
[SELECT null,metronome(1 hour),null];

Furthermore, its functionality can be used to support another requirement
from the stream world, the heartbeat. This component ensures a uniform stream
of events, e.g., missing elements are replaced by a dummy if nothing happened
in the last period. At regular intervals the heartbeat injects a null-valued tuple
to mark the epoch. If necessary, it emits more tuples to ensure that all epochs
seen downstream before the next event are handled.

The heartbeat functionality can be illustrated using a join between two bas-
kets. The first one models the heartbeat and the second one the events received.
This operation is in-expensive in a column-store. We assume that the heartbeat
basket contains enough elements to fill any gap that might occur. Its clock
runs ahead of those attached to the events. In this case, we can pick all rel-
evant events from the heartbeat basket and produce a sorted list for further
processing.

The heartbeat functionality can be modeled using the metronomes and the
basket expressions as follows.

INSERT INTO HB [SELECT null, T, null
FROM [select metronome(1 second)]];

[SELECT * FROM X

UNION

SELCT * FROM HB

WHERE X.tag < max(SELECT tag FROM HB)];

102 CHAPTER 4. QUERY LANGUAGE

4.3.5 Basket Nesting

A query may be composed of multiple and nested basket expressions. The
Petri-net interpretation creates intermediate results as soon as a basket becomes
non-empty. Each incurs an immediate side-effect of tuples movement from its
source to a temporary table in the context of the query execution plan. Yet, a
compound query is only executed when all basket sub-expressions have produced
a result. Consequently the query result depends on their evaluation order.
However, since at any point in time the database seen is complete snapshot, it is
up to the programmer to resolve evaluation order dependencies using additional
predicates.

A design complication arises when two continuous queries use basket expres-
sions over the same basket and if they are interested in the same events. Then
we have a potential conflict. These events will be assigned randomly to either
query. If both need access to the same event, it is mandatory to split the basket
and replicate the events to a private basket first.

4.3.6 Bounded Baskets

The arrival rate of stream events may surpass the capabilities of queries to
handle them in time before the next one arrives. In that case, the baskets
grows with a backlog of events. To tackle this problem, StreamSQL provides a
mechanism to identify “slack”, i.e., the number of tuples that may be waiting
in the basket. The remainder is silently dropped.

Although this problem is less urgent in the bulk processing scheme of Mon-
etDB, it might still be wise to control the maximum number of pending events
in bursty environments. Of course, the semantics needed strongly depend on
the application at hand. Some may benefit from a random sampling approach,
others may wish to drown old events. Therefore, a hardwired solution should
be avoided.

Example 6. The query below illustrates a scheme to drop old events. Although
this does not close the gap completely, the basket can be evaluated in micro-
seconds.

SELECT count(B.*), ’ dropped’
FROM [SELECT *
FROM X
WHERE id < max(SELECT id FROM X)-100)] as B;

4.3. QUERYING STREAMS 103

4.3.7 Stream Partitioning

Stream engines use a simple value-based partitioning scheme to increase the
parallelism and to group events. A partitioning generates as many copies of
the down-stream plans as there are values in the partitioning column. This
approach only makes sense if the number of values is limited. It is also not
necessary in a system that can handle groups efficiently.

In the context of MonetDB, value-based partitioning is considered a tactical
decision taking automatically by the optimizers. A similar route is foreseen in
handling partitions over streams to increase parallelism. Partitioning to group
events of interest still relies on the standard SQL semantics.

Example 7. A continuous query that returns a sorted list by traffic per minute
become:

SELECT Z.tag, Z.cnt
FROM [SELECT minute(tag) as tag,
count (*) as cnt
FROM X
GROUP BY tag] as Z
ORDER BY Z.tag;

4.3.8 Transaction Management

Transaction semantics in the context of volatile events and persistent tables is
an open research area. For some applications non-serializable results should be
avoided and traditional transaction primitives may be required. In StreamSQL
this feature is cast in a lock and unlock primitive. It makes transaction control
visible at the application level with crude blocking operators.

The approach taken in the DataCell is to rely on the (optimistic) concur-
rency control scheme and transaction logger as much as possible. All continuous
queries have equal precedence and their actual execution order is explicitly left
undefined. If necessary, it should be encoded in a control basket or explicit
dependencies amongst queries.

4.3.9 Sliding Windows

Most DSMSs define query processing around streams seen as a linear ordered
list. This naturally leads to sequence operators, such as NEXT, FOLLOWS, and
WINDOW expressions. The latter extends the semantics of the SQL wWINDOW

104 CHAPTER 4. QUERY LANGUAGE

construct to designate a portion of interest around each tuple in the stream.
The WINDOW operator is applied to the result of a query and, combined with
the iterator semantics of SQL, mimics a kind of basket expression.

However, re-using SQL window semantics introduce several problems. To
name a few, they are limited to expressions that aggregate only, they carry spe-
cific first/last window behavior, they are read-only queries, they rely on predi-
cate evaluation strictly before or after the window is fixed, etc. In StreamSQL
the window can be defined as a fixed sized stream fragment, a time-bounded
stream fragment, or a value-bound stream fragment only.

The basket expressions provide a much richer ground to designate windows of
interest. They can be bound using a sequence constraint, they can be explicitly
defined by predicates over their content, and they can be based on predicates
referring to objects elsewhere in the database.

Example 8. A sliding window of precisely 10 elements and a shift of two is
encapsulated in the query below. A time bounded window simply requires a
predicate to inspect the clock.

SELECT * FROM [SELECT * FROM X limit 2]
UNION
SELECT * FROM X limit 8;

--create window Xw (size 10 seconds
- advance 2 seconds);
SELECT *
FROM [SELECT =*
FROM X
WHERE tag < min(SELECT X.tag) + 2 seconds]
UNION
SELECT *
FROM X
WHERE tag < min(SELECT X.tag) + 8 seconds;

The generality of the basket expressions come at a price. Optimization of
sequence queries may be harder if the language or scheme does not provide
hooks on this property. However, we still allow window functions to be used
over the baskets. Their semantics is identical to applying them to an SQL table.

4.4. SUMMARY 105

4.4 Summary

In this chapter, we presented the DataCell language interface. A small extension
of the relational algebra engine of MonetDB is sufficient to produce a fully
functional prototype DataCell implementation. The basket expressions, blended
into the syntax and semantics of SQL 2003, provide an elegant solution to define
stream-based applications. The language concepts introduced are compared
against building blocks found in “pure” stream management systems. They can
all be expressed in a concise way and demonstrate the power of starting the
design from a full-fledged SQL implementation.

The proposed language interface is an alternative suggestion to the existing
SQL-like languages for data streams, e.g., (DBL, ; StreamSQL, 2009). Basket
expressions are proposed as a general way to express predicate windows over
multiple streams. However, the extensible nature of MonetDB/DataCell archi-
tecture allows the complete language disconnection from the underlying engine
if it is necessary. This means that with the appropriate changes in the external
part of the MonetDB/DataCell software stack, i.e., in the parser and in part
of the optimizer rules, we can easily set and implement a different language
interface.

In the following chapter we study one of the most crucial pure stream process-
ing problems, i.e., incremental processing for window-based continuous queries.
Even with the conventional underlying infrastructure that MonetDB offers to
DataCell, we manage to compete against a specialized stream engine, elevating
incremental processing at the query plan level, instead of building specialized
stream operators. Then, Chapter 6 concludes the thesis and discusses a num-
ber of interesting open topics and research directions towards a complete data
management architecture that integrates database and stream functionalities in
the same kernel.

106 CHAPTER 4. QUERY LANGUAGE

Chapter 5

Incremental Processing in
DataCell*

5.1 Introduction

In the two previous chapters, we described the basic DataCell architecture and
the SQL-extended query language interface that allow us to formulate and sub-
mit continuous queries, encompassing streams and tables. However, numerous
research and technical questions are still waiting for answers and solutions in
the DataCell context. The most prominent issues are the ability to provide spe-
cialized stream functionality and hindrances to guarantee real-time constraints
for event handling. Chapter 3 illustrates the DataCell architecture but leaves
open issues related to real-time stream processing. Here, we make the next step
towards a fully functional streaming DBMS kernel; we study how we can deal
with incremental processing while staying faithful at the DataCell philosophy
that dictates minimal changes to the underlying kernel.

*The material in this chapter has been the basis for a paper submitted for publication
entitled “Enhanced Stream Processing in a DBMS Kernel” (Liarou et al., 2012a) and at
the PVLDB12 paper “MonetDB/DataCell: Online Analytics in a Streaming Column-Store”
(Liarou et al., 2012b).

107

108 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

5.1.1 Contributions

In this chapter, we focus on the core of streaming applications, i.e., incremen-
tal stream processing and window-based processing. Window queries form the
prime programming paradigm in data streams, i.e., we break an initially un-
bounded stream into pieces and continuously produce results using a focus win-
dow as a peephole on the data content passing by. Successively considered
windows may overlap significantly as the focus window slides over the stream.
It is the cornerstone in the design of specialized stream engines and typically
specialized operators are designed to avoid work when part of the data falls
outside the focus window.

Most relational operators underlying traditional DBMSs cannot operate in-
crementally without a major overhaul of their implementation. Here, we show
that efficient incremental stream processing is, however, possible in a DBMS
kernel handling the problem at the query plan and scheduling level. For this to
be realized the relational query plans are transformed in such a way that the
stream is broken into pieces and different portions of the plan are assigned to
different portions of the focus window data. DataCell takes care that this “par-
titioning” happens in such a way that we can exploit past computation during
future windows. As the window slides, the stream data also “slides” within the
continuous query plan.

In this chapter, we illustrate the methods to extend the MonetDB/DataCell
optimizer with the ability to create and rewrite them into incremental plans.
A detailed experimental analysis demonstrates that DataCell supports efficient
incremental processing, comparable to a specialized stream engine or even better
in terms of scalability.

5.1.2 Outline

The rest of this chapter is organized as follows. Firstly, Section 5.2 presents a
short recap of the notion of window-based stream processing. Then, Sections 5.3
and 5.4 discuss in detail how we achieve efficient incremental processing in Dat-
aCell. Section 5.6 provides a detailed experimental analysis. We compare the
incrementalist DataCell kernel with our basic architecture (discussed in Chapter
3) and a specialized state-of-the art commercial stream engine. Finally, Section
6 concludes the chapter.

5.2. WINDOW-BASED PROCESSING 109

a) Landmark windows b)Tumpling windows c) Sliding windows
wa——————————— wa — lwa € windowsize]
%wS HWS —_— HWS T estep i
§w2 ::wz — L window ::w2 _ :
§w17 w17 size/stepiimi ‘

Figure 5.1: Window-based stream processing

5.2 Window-based Processing

Continuous computation of long standing queries in large scale streaming en-
vironments is a huge challenge from a data management perspective. Contin-
uously considering all past data is not a scalable solution. Especially when it
comes to blocking operators, e.g., a join, it is unrealistic to continuously analyze
all data purely from a system resources point of view. This way, window-based
queries have been introduced to assist efficient query processing in streaming
environments. By windowing a continuous query, we delimit the boundaries of
the initially unbounded stream and we continuously produce results on different
portions of the data. Figure 5.1 shows simple examples of how window-based
processing differs from “complete” stream processing.

Figure 5.1(a) shows the typical unbounded stream processing. This is often
referred to as landmark window in the literature, i.e., the processing window is
continuously growing. Figures 5.1(b) and (c¢) on the other hand, show window
processing where as new data tuples arrive, some of the old ones expire. This
way, a limited window of tuples is defined and the system is called to produce
answers only for the tuples within the current window, ignoring the larger vol-
ume of past data preceding this window. The most straight-forward type are
tumbling windows (cf., Fig. 5.1(b)). Here, the size of the step, i.e., the number
of tuples we move the window forward, is equal to the window size. This leads
to non overlapping windows of tuples, i.e., every tuple is considered (at most)
once for a given query.

Other than making query processing possible by limiting the amount of
processed data, window-based processing also raises a number of challenges.
Especially, sliding window queries, i.e., queries where the step is smaller than
the window such that subsequent windows owverlap, lead to very interesting
scenarios and processing challenges. Figure 5.1(c) shows an example of sliding

110 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

Algorithm 2 The factory for continuous re-evaluation of a tumbling window
query that selects all values of attribute X in range v1-vs.
1: input = basket.bind(X)
2: output = basket.bind(Y)
3: while true do
while input.size < windowsize do
5 suspend ()
6: basket.lock(input)
7: basket.lock(output)
8w = basket.getLatest(input,windowsize)

>

9: result = algebra.select(w,v1,v2)

10: basket.delete(input,windowsize)
11: basket.append(output,result)

12: basket.unlock(input)
13: basket.unlock(output)
14: suspend|()

windows. The ideal goal is that every time we need to recompute the result
of a query over the current window, we would like to analyze as little data as
possible by cleverly exploiting past computation actions over previous windows
that overlap with the current one.

In other words, the result of each window should be incrementally computed,
by reusing valid past results. This incremental behavior is fundamental in all
stream algorithms, techniques and systems. In addition, it is a functionality
that is missing from a typical DBMS. Thus, it becomes a unique problem for
the DataCell context as well.

5.3 Continuous Re-evaluation

Complete re-evaluation is the straight-forward approach when it comes to con-
tinuous queries for a DBMS engine. The idea is simple; every time a window is
complete, i.e., enough tuples have arrived, we compute the result over all tuples
in the window. In fact, this is the way that any DBMS can support continu-
ous query processing modulo the addition of certain scheduling and triggering

5.4. INCREMENTAL PROCESSING 111

mechanisms.

We can achieve this kind of processing by applying minimal changes to the
existing DataCell architecture. Assuming, for the time being, single stream
queries and tumbling windows, we only need to make sure that a query plan
will “consume” |W| tuples of the input stream at a time, where |W| is the size of
the window. This means that |WW| tuples will be considered for query processing
and subsequently |WW] tuples are dropped from the input basket while of course
the query plan will not run unless at least |[W| tuples are present.

All this boils down to a set of simple rewriting rules for the continuous
query plans of DataCell. For example, Algorithm 2 shows such a continuous re-
evaluation query plan, for a simple window range query. The window semantics
affect the plan only in such a way that it checks whether there are enough input
tuples to fill a complete window (lines 4 and 5 in Algorithm 2). In addition,
it only considers and subsequently drops |W| tuples at a time (lines 8 and 10
respectively in Algorithm 2).

To support also sliding overlapping windows with a step size of |w| < |[W/|
tuples, only one more minor change is required, refining line 10 in Algorithm 2
as follows. Instead of deleting the complete window we would only delete the
oldest |w| tuples that expire per step, namely the sliding step that encompass
those tuples that are not valid in the next window.

This way, re-evaluation is quite simple to achieve in DataCell and as before
the core of the query plan can be any kind of complex query, allowing DataCell
to support the full strength of SQL and the complete optimizer module.

5.4 Incremental Processing

Although the direction seen in the previous section is sufficient for tumbling
and hopping windows, i.e., windows that slide per one or more than a full
window size at a time, it is far from optimal when it comes to the more common
and challenging case of overlapping sliding windows. The drawback is that we
continuously process the same data over and over again, i.e., a given stream
tuple t will be considered by the same query multiple times until the window
slides enough for ¢ to expire. For this, we need efficient incremental processing,
a feature missing from typical DBMSs. Here, we discuss how we address this
fundamental stream problem in DataCell.

112 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

5.4.1 The Goal

For ease of presentation, we begin with a high-level description of the technique
at large, before we continue to discuss in more detail the various decisions and
options.

The vision is to create a full-fledged stream engine without sacrificing any of
the existing DBMS technology benefits. Our effort for incremental processing
here successfully follows this path; without creating new specialized operators,
we support sliding window queries by carefully rewriting and scheduling the
existing DBMS query plans. This way, we can exploit all sophisticated query
optimization techniques of a modern DBMS and all highly optimized operator
implementations as well as query plan layouts.

5.4.2 Splitting Streams

Conceptually, DataCell achieves incremental processing by partitioning a win-
dow into n smaller parts, called basic windows. Each basic window is of equal
size to the sliding step of the window and is processed separately. The resulting
partial results are then merged to yield the complete window result.

Assume a window W, = wq,wo,...,w, split into n basic windows. After
processing W;, all windows after that can exploit past results. For example, for
window W; 1 = wa, ws, . .., w,+1 only the last basic window w,, 41 contains new

tuples and needs to be processed, merging its result with the past partial results.
This process continues as the window slides. Effectively, for each new window
we only need to process the new tuples as opposed to the naive re-evaluation
method that needs to process all window tuples repeatedly.

5.4.3 Operator-level vs Plan-level Incremental Processing

The basic strategy described above is generally considered as the standard back-
bone idea in any effort to achieve incremental stream processing. It has been
heavily adopted by researchers and has lead to the design of numerous special-
ized stream operators such as window stream joins and window stream aggre-
gates, e.g., (Dobra et al., 2002; Ghanem et al., 2007; Golab, 2006; Kang et al.,
2003; Zhu and Shasha, 2002; Li et al., 2005).

Stream engines provide radically different architectures than a DBMS by
pushing the incremental logic all the way down to the operators. Here, in the
context of DataCell we design and develop the incremental logic at the query
plan level, leaving the lower level intact and thus being able to reuse the complete

5.4. INCREMENTAL PROCESSING 113

storage and execution engine of a DBMS kernel. The motivation is to inherit all
the good properties of the DBMS regarding scalability and robustness in heavy
workloads as demanded by nowadays stream applications.

The questions to answer then are:

(1) How can we achieve this in a generic and automatic way?

(2) How does it compare against state-of-the-art stream systems?

In this section, we will describe our design and implementation in DataCell,
where we extend the optimizer to transform normal continuous query plans into
incremental ones, which a scheduler is responsible to trigger. In the next section,
we will show the advantages of this approach over specialized stream engines as
well as the possibilities to combine those two extremes.

5.4.4 Plan Rewriting

The key point is careful and generic query plan rewriting. DataCell takes as in-
put the query plans that the SQL engine creates, leveraging the algebraic query
optimization performed by the DBMS’s query optimizer. Fully exploiting Mon-
etDB’s execution stack, the incremental plan generated by DataCell is handed
back to MonetDB’s optimizer stack for physical plan optimization.

To rewrite the original query plan into an incremental one, DataCell applies
four basic transformations;

1) Split the input stream into n basic windows

(1)

(2) Process each (unprocessed) basic window separately
(3) Merge partial results
(4)

4) Slide to prepare for the next basic window

Figure 5.2 shows this procedure schematically. For the first window, we run
part of the original plan for each basic window while intermediates are directed
to the remainder of the plan to be merged and execute the rest of the operators.
As the window slides we need to process only the new data avoiding to reaccess
past basic windows (shown faded in Figure 5.2) and perform the proper merging
with past intermediates. Achieving this for generic and complex SQL plans is
everything but a trivial task. Thus, we begin with an over-simplified example
shown in Algorithm 3 to better describe these concepts.

114 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

Splitting

The first time the query plan runs, it will split the first window into n basic
windows (line 7). This task is in practice an almost zero cost operation in
MonetDB and results in creating a number of views over the base input basket.

Query Processing

The next part is to run the actual query operators over each of the first n — 1
basic windows (lines 8-11), calculating their partial results. While in general
more complicated (as we will see later on), for this simple single-stream, single-
operator query the task boils down to simply calling the select operator for each
basic window. For more complex queries, we will see that only part of the plan
runs on every single basic window, while there is another part of the incremental
plan that runs on merged results.

Basic Loop

The plan then enters an infinite loop where it (a) runs the query plan for the last
(latest) basic window and (b) merges all partial results to compose the complete
window result. The first part (line 18) is equivalent to processing each of the
first n — 1 basic windows as discussed above. For the simple select query of our
example, the second part can create the complete result by simply concatenating
the n partial results (line 19). We will discuss later how to handle the merge in
more complex cases.

Transition Phase

Subsequently, we start the preparation for processing the next window, i.e.,
for when enough future tuples will have arrived. Basically, this means that
we first shift the basic windows forward by one as indicated in line 20 for this
example. Then, more importantly we make the correct correlations between
the remaining intermediate results, this transition (line 21) is derived by the
previous one. In the current example both transitions are aligned, but in the
case of more complicated queries (e.g., multi-stream query with join operators),
we should carefully proceed this step.

5.4. INCREMENTAL PROCESSING 115

Algorithm 3 The factory for incremental evaluation of a single stream window
query that selects all values of attribute X in vq-vs.
1: input = basket.bind(X)
output = basket.bind(Y)
while input.size < windowsize do
suspend()
basket.lock(input)
basket.lock(output)

I

wy, Wa, ..., w, = basket.split(input,n)
8: res; = algebra.select(wy,v1,v2)

9: ress = algebra.select(wsg,v1,v2)

10: ...

11: res,—1 = algebra.select(w,—1,v1,v2)

12: while true do

13: while input.size < windowsize do
14: suspend()

15: basket.lock(input)

16: basket.lock(output)

17: w, = basket.getLatest(input,stepsize)
18: res, = algebra.select(w,,v1,v2)

19: result = algebra.concat(resy,ress,...,res,)
20: Wezp = W1, W1 = W2, W2 = W3, ..., Wp—1 = Wp
21: res; =TeSy, T€Sy = r'eS3, ..., reSn_1 = r'esy

22: basket.delete(input,wezp)
23: basket.append(output,result)

24: basket.unlock(output)
25: basket.unlock(input)
26: suspend()

Intermediates Maintenance

Maintaining and reusing the proper intermediates is of key importance. In our
simple example, the intermediates we maintain are the results of each select

116 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

Original First Window Second Window
Plan F W, {
: W, r Wi
' 0000 00 00000 o0 L X BN J '> %‘0 00000 00O o0 0 0000 >
—Wp = W2 = Wn — - * i - i -

= W1 == W2 ek Wit e Wn

Intermediate

exploited u"

Figure 5.2: Incremental processing at the query plan level

Intermediates
stored

O0+0-0~0~0

operator which are to be reused in the next window as well. In general, a
query plan may have hundreds even thousands of operators. The DataCell plan
rewriter maintains the proper intermediates by following the path of operators
starting from each basic window to associate the proper intermediates with the
proper basic window such as to know (a) how to reuse an intermediate and
(b) when to expire it. This becomes a big challenge especially in multi-stream
queries where an intermediate from one stream may be combined with multiple
intermediates from other streams, e.g., for join processing (we will see more
complex examples later on).

Continuous Processing

The next step is to discard the old tuples that expire (line 22) and deliver the
result to the output stream (line 23). After that, the plan pauses (line 26) and
will be resumed by the scheduler only when new tuples have arrived. Lines
13-14 ensure that the plan then runs only once there are enough new tuples to
fill a complete basic window.

5.4. INCREMENTAL PROCESSING 117

Discarding Input

In simple cases, as in the given example, once the intermediate results of the
individual basic windows are created, the original input tuples are no longer
required. Hence, to reduce storage requirements we can discard all processed
tuples from the input basket, even if they are not yet expired, keeping only the
respective intermediate results for further processing. Extending Algorithm 3
for achieving this is straightforward. A caveat seen shortly is that there are
cases, e.g., multi-stream matching operations like joins, where we cannot apply
this optimization, as we need access the original input data until it expires.

5.4.5 Generic Plan Rewriting

When considering more complex queries and supporting the full power of SQL,
the above plan rewriting goals are far from simple to achieve. How and when
we split the input, how and when we merge partial results are delicate issues
that depend on numerous parameters related to both the operator semantics
for a given query plan and the input data distribution.

In this way, our strategy of rewriting query plans becomes as follows. The
DataCell plan rewriter takes as input the optimized query plan from the DB
optimizer.

(1) The first step remains intact; it splits the input stream into n = |W|/|w|
disjoint pieces.

(2) In a greedy manner, it then consumes one operator of the target plan at
a time. For each operator it decides whether it is sufficient to replicate
the operator (once per basic window) or whether more actions need to be
taken.

The goal is to split the plan as deep as possible, i.e., allow as much of the
original plan operators to operate independently on each basic window. This
gives maximum flexibility and eventually performance as it requires less post
processing with every new slide of the window, i.e., less effort in merging partial
results.

To ease the discussions towards a generic and dynamic plan rewriting strat-
egy, we continue by giving a number of characteristic examples where different
handling is needed than the simplistic directions we have seen before. Fig-
ures 5.3, 5.4, 5.5, 5.6 and 5.7 will help in the course of this discussion through a

118 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

variety of queries. Note, that we show only the pure SQL query expression, cut-
ting out the full language statments of the continuous sliding window queries.
For each query, we show the reevaluated continuous query plan as well as the
DataCell incremental plan. The solid lines in the incremental query plan in-
dicate the basic loop, i.e., the path that is continuously repeated as more and
more tuples arrive. The rest of the incremental plan needs to be executed only
the first time this plan runs.

5.4.6 Exploit Column-store Intermediates

As we have already discussed, our design is on top of a column-store architecture.
Column-stores exploit vector based bulk processing, i.e., each operator processes
a full column at a time to take advantage of vector-based optimizations. The
result of each operator is a new column (BAT in MonetDB). In DataCell, we
do not release these intermediates once they have been consumed. Instead,
we selectively keep intermediates when processing one window to reuse them
in future windows. This effectively allows us to put breakpoints in multiple
parts of a query plan given that each operator creates a new intermediate.
Subsequently, we can “restart” the query plan from this point on simply by
loading the respective intermediates and performing the remaining operators
given the new data. Which is the proper point to “freeze” a query plan depends
on the kind of query at hand. We discuss this in more detail below.

5.4.7 Merging Intermediates

The point where we freeze a query plan practically means that we no longer
replicate the plan. At this point we need to merge the intermediates so that
we can continue with the rest of the plan. The merging is done using the
concat operator. Examples of how we use this can be seen in all instances
of Figures 5.3 till 5.7. Observe, how before a concat operator the plan forks
into multiple branches to process each basic window separately, while after the
merge it goes back into a single flow. In addition, note that depending on the
complexity of the query, there might be more than one flow of intermediates
that we need to maintain and subsequently merge. For example, the plans in
Figure 5.3, 5.4 and 5.7 have a single flow of intermediates while the plans in
Figure 5.5 and 5.6 have two flows.

5.4. INCREMENTAL PROCESSING 119

Select a From stream Where vl <a <v2

! Normal Incremental :
1
: :
! 1
: |
! result i
1
i T transition 1
1
1
! concat '
1
: :
! |
: |
! select ¢~ \, (i
: result 1 > A !
: |
: |
1 select split |
\ 1
! T suspend |
1
! 1
1
! stream stream i
! |
1

Figure 5.3: Example of query plan transformations for range query

5.4.8 Simple Concatenation

The simplest case are operators where a simple concatenation of the partial
results forms the correct complete result. Typical representatives are the select
operator as featured in our previous examples, and any map-like operations. In
this case, the plan rewriter can simply replicate the operation, apply it to each
basic window, and finally concatenate the partial results. Figure 5.3 depicts
such an example for a range query.

Every time the window slides, we only have to go through the part of the
plan marked with solid lines in Figure 5.3, i.e., perform the selection on the
newest basic window and then concatenate the new intermediate with the old
ones that are still valid. The transition phase which runs between every two
subsequent windows guarantees that all intermediates needed and inputs are
shifted by one position as shown in Algorithm 3.

120 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

Select sum(a) From stream Where a<v1

Normal Incremental

result
transition

O

concat Cg
A \
sum O

result A- A
s select { 3 (
um -‘ x
\d
select split O O
T suspend
stream stream

Figure 5.4: Example of query plan transformations for SUM function

5.4.9 Concatenation plus Compensation

The next category consists of operations that can be replicated as-is, but re-
quire some compensation after the concatenation of partial results to produce
the correct complete result. Typical examples are aggregations like min, max,
sum, as well as operators like groupby/distinct and orderby/sort. For these
examples, the compensating action is simply applying the very operation not
only on the individual basic windows, but also on the concatenated result as
shown for sum in Figure 5.4. Other operations might require different compen-
sating actions, though. For instance, a count is to be compensated by a sum of
the partial results.

Note how Figure 5.4 actually combines the sum with a selection such that the

5.4. INCREMENTAL PROCESSING 121

Select avg(a) From stream Where a<v1

Normal Incremental
result
transition
i\
sum CD/v V})
concat & concat

result

Figure 5.5: Example of query plan transformations for AVG function

selection is performed only on the basic windows, while the sum-compensation
is required after the concatenation.

5.4.10 Expanding Replication

A third category consists of operations that cannot simply be replicated to the
basic windows as-is, but need to be represented by multiple different operations.
For instance, Figure 5.5 sketches the incremental calculation of average. In-
stead of simply replicating the average operation, we first need to calculate
sum and count separately for each basic window, creating two separate data
flows. Then, the global sum and count after concatenation are derived using

122 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

Select a1,max(a2) From stream Where al<v1 Group by a1

Normal Incremental

transition

Q

result

max

groupby / concat

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
| result concat
1
1
1 g
1 K
! .
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

\ T
O max groupby 1Y ¢
SR
/ T select ('L-{-.(’ -
groupby Oreconstruct ~ N

select <g/ split

Figure 5.6: Example of query plan transformations for GROUP BY query

the respective compensating actions as introduced above. Finally, dividing the
global sum by the global count merges the two data flows, again, to yield the
requested global average.

5.4.11 Synchronous Replication

All cases discussed so far consider unary operations, either individually or in
linear combinations, involving only a single attribute, and hence a single input
data flow with columnar evaluation. Once multiple attributes are involved, we
get multiple, possibly interconnected data flows as depicted for a grouped ag-

5.4. INCREMENTAL PROCESSING 123

select max(a1) from streamA, streamB where al<v1 and b1<v2 and a1=b1
""""" Normal Incremental |
transition

result

result

i
L

b N
select(é‘ ‘ ? spli 4—6

suspend

1 b1

V)

Figure 5.7: Example of query plan transformations for join query

gregation query in Figure 5.6. Canonically applying the rewrite rules discussed
above, we can replicate the different data flows synchronously over the basic
windows and use the compensating actions to merge the data flows into a single
result just as in the original query plan.

5.4.12 Multi-stream Queries

All cases discussed above only consider a single data stream and (from an N-ary
relational point of view) unary (i.e., single-input) operations. In these cases, it is
sufficient to simply replicate the operations as often as there are basic windows.

124 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

For multiple data streams and N-ary operations to combine them, the situation
is more complex. Consider, for instance, the case of two streams and a join
to match them as depicted in Figure 5.7. For simplicity of presentation we
assume that both streams use the same windows size |W| and the same step
size |w|. Given that we create the n = |W|/|w| basic windows per stream as time
slices, i.e., independently of the actual data (e.g., the join attribute values), we
need to replicate the join operator n? times to join each basic window from the
left stream with each basic window from the right stream. As with the other
examples, the dashed operator instances in Figure 5.7 need to be evaluated
only once during the initial preface. The solid operator instances need to be
evaluated repeatedly, once for each step of the sliding window. Note that in this
case we cannot discard the selection results once the join has consumed them
for the first time. Rather, they need to be kept and joined with newly arriving
data until the respective basic windows expire.

5.4.13 Landmark Window Queries

Landmark queries differ from sliding windows queries in that subsequent win-
dows share the same fixed starting point (“landmark”), i.e., tuples do not expire
per window step. Tuples either never expire, or at most very infrequently, and
then all past tuples expire by resetting the global landmark.

Supporting such queries is straightforward in our design. Since data never
expires, we do not have to keep individual intermediate results per basic windows
to concatenate the active ones per step. Instead, we need to keep only one
cumulative result for each concat operation in our DataCell plans in Figures 5.3
till 5.7. In fact, there is not even a need to split the preface in n basic windows.
The initial window can be evaluated in one block; only newly arriving data is
evaluated once a basic windows is filled as discussed above.

5.4.14 Time-based Sliding Windows

Our approach is generic enough to support both main sliding window types,
i.e., count-based and time-based queries. In the first case, the window size and
the sliding function are expressed in quantity of tuples, so counting and slicing
the input stream is a straightforward process. In the case of time-based queries,
the window parameters are defined in terms of time, e.g., query with window
size 1 hour that slides per 10 minutes. Once a tuple arrives into the system
it is tagged with a timestamp that indicates its arrival time (we could also
process the window based on the generation tuple time). The splitting of input

5.4. INCREMENTAL PROCESSING 125

stream now happens taking into account the tuple timestamps. We devide the
stream into time intervals, let’s say equal to the sliding period. This means
that each generated basic windows contains as many tuples as they arrived in
the corresponding time interval, so we could end up with unequally filled in
basic windows. After that point, DataCell processes the time-based window
query following the same methodology we have discussed so far. Empty basic
windows are recognized and skip processing.

5.4.15 Optimized Incremental Plans

The decision to split the initial window into n = |W|/|w| basic windows is
purely driven by the semantics of sliding window queries. Further performance
considerations are not involved. Consequently, the DataCell incremental plans
as described so far start processing the next step only once sufficient tuples have
arrived to fill a complete basic window. The response time from the arrival of
the last tuple to fill the basic window until the result is produced is hence
determined by the time to process a complete basic window of |w| tuples (plus
merging the partial results of all n active basic windows).

However, since tuples usually arrive in a steady stream, a fraction of the
basic window could be processed before the last tuple arrives. This would leave
fewer tuples to be processed after the arrival of the last tuple, and could hence
shorten the effective response time.

In fact, the above described DataCell approach provides all tools to imple-
ment this optimization. The idea is to process the latest basic window incre-
mentally just as we process the whole window incrementally. Instead of waiting
for |w| tuples, the basic loop is triggered for every |v| = |w|/m tuples, splitting
the basic window in m chunks. The results of the chunks are collected, but no
global result is returned, yet. Only once m chunks have been processed, the
m chunk results are merged into the basic window result, just like the n basic
window results are merged into the window result above. Then, the n basic
window results are merged and returned. This way, once the last basic window
tuple has arrived, only |v| = |w|/m tuples have to be processed before the result
can be returned.

Choosing m and hence |v] is a non-trivial optimization task. m = |w| mini-
mizes |v| and thus the pure data processing after the arrival of the last tuple, but
maximizes the overhead of maintaining and merging the chunk results. m =1
is obviously the original case without optimization.

Given that both processing costs and merging overhead depend on numerous
hardly predictable parameters, ranging from query characteristics over data

126 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

distributions to system status, we consider analytical models with reasonable
accuracy hardly feasible. Instead, we propose a dynamic self-adapting solution.
Starting with m = 1, we successively increase m, monitoring the response time
for each m for a couple of sliding steps. It is to be expected that the response
times initially decrease with increasing m as less data needs to be processed
after the arrival of the last tuple. Only once the increasing merging overhead
outweighs the decreasing processing costs, the response times increase, again.
Then, we stop increasing m and reset it to the value that resulted in the minimal
response time. Next to increasing m linearly or exponentially (e.g., doubling
with each step), bisection in the interval [1, |w]|] is a viable alternative for finding
the best value for m.

5.5 Optimizer Pipeline in DataCell for Incre-
mental Query Plans

In this chapter, we presented the necessary transformation rules needed for the
creation of incremental query plans for continuous sliding window queries. In
this section, we discuss in more detail the optimization steps we implant in our
MonetDB/DataCell experimentation platform for generic plan generation.

Recall the first DataCell implementation (see Section 3.4), where we needed
to change the MonetDB optimizer, creating and adding new optimizer rules and
defining a new optimizer pipeline as follows.

datacell_pipe=inline,remap,evaluate,costModel,coercions,emptySet,
aliases,deadcode,constants,commonTerms,datacell,emptySet,aliases,
deadcode,reduce, garbageCollector,deadcode,history,multiplex

There, DataCell receives an one-time query plan which is produced by the
MonetDB optimizer and it transforms it to a continuous query plan that works
according to the re-evaluation logic. Now, we need to extend our optimization
phase again with a new set of rules in order to support incremental stream
processing for sliding window queries. The new optimizer pipeline we configure
is the following.

datacelllnc_pipe=inline,remap,evaluate,costModel,coercions,emptySet,
aliases,deadcode,constants,commonTerms,datacell,emptySet,aliases,
deadcode,datacellSlicer,mergetable,deadcode,datacellIncrementalist,
reduce,garbageCollector,deadcode,history,multiplex

5.5. OPTIMIZER PIPELINE IN DATACELL FOR INCREMENTAL QUERY PLANS127

Compared to the first datacell_pipe, the new pipeline for incremental plans
contains three new optimizer rules i.e., datacellSlicer, mergetable and
datacellIncrementalist. Their main role is to transform a continuous query
plan to a incremental query plan. The main actions they take are as follows.

e Traverse the plan to find the baskets on which we apply the window pred-
icate.

e For each window, split the input window into n pieces, each piece is equal
to the sliding window step of the query. Conceptually the concatenation
of the n pieces constitutes the original data in the window. Replace the
original MAL instruction that materializes the window stream, with n
instructions that slice the window into each of the n pieces.

e Traverse the plan and find which MAL plan instructions we should repli-
cate, due to window splitting. These are the instructions where the original
materialized window stream is involved (explicitly and implicitly).

e Merge the intermediate materialized result at the proper place of the query
plan.

e Identify the original MAL plan instructions that cannot be replicated.
Give them the proper merged input.

e Introduce the instructions for the transition phase. Starting from the
source, i.e., slices, down to the intermediate results.

e Place the instructions that the engine should evaluate only once outside
the infinite loop.

e Wrap the MAL instructions that correspond to the new portion of the
data stream inside the infinite loop. Wrap inside the infinite loop the
merging and the transition steps; they need to run continuously

e Traverse the plan to find which slices are needed and which are not needed
for the rest of the incremental query evaluation.

This is a quite complex process, since we have to traverse and transform the
plan multiple times resulting to a significant makeover of the original query plan.
The benefit of developing the transformation logic at the optimization phase, is
that we can compile and transform any kind of complex queries automatically
while still exploiting traditional DBMS optimization strategies.

128 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

Multi-query optimization for sliding window queries is an important area
of data streams research. At this level, our implementation does not prevent
automatic multi query optimization at the compilation phase.

5.6 Experimental Analysis

In this section, we provide a detailed experimental analysis of incremental pro-
cessing in our DataCell implementation over MonetDB v5.15 All experiments
are on a 2.4 GHz Intel Core2 Quad CPU equipped with 8 GB RAM and running
Fedora 12.

Experimental Set-up and Outline

We compare DataCell incremental processing against the typical re-evaluation
approach which reflects the straight-forward way of implementing streaming
over a DBMS. In the rest of this section, we refer to the former implementation
simply as DataClell; and the latter as DataCellr. In addition, we compare Dat-
aCell against a state-of-the-art commercial stream engine, clearly demonstrating
the successful design of incremental processing over an extensible DBMS kernel
and the potential of blending ideas from both worlds.

We study in detail the effects of various parameters, i.e., query and data
characteristics such as window size, window step, selectivity factors, etc. The
performance metric used is response time, i.e., the time the system needs to
produce an answer, once the necessary tuples have arrived.

In the first part of the experimentation we will study DataCellr and DataCell;
to acquire a good understanding of how a typical DBMS performance can be
transformed into an incremental one and the parameters that affect it. Given
that these two implementations are essentially built over the same code base,
this gives a clear intuition of the gains achieved by the incremental DataCell
over a solid baseline. Then, with this knowledge in mind, in the second part we
will see in detail how this performance compares against a specialized engine
and what are the parameters that can swing the behavior in favor of one or the
other approach.

We will use a single stream and a multi-stream query.

(Q1) SELECT x1, sum(x2)
FROM stream
WHERE x1 > vi
GROUP BY x1

5.6. EXPERIMENTAL ANALYSIS 129

(a) Single-stream (Query 1) (b) Multi-stream (Query 2)
1 O T T T T 10 T T T T

DataCellg —

6 DataCellg —% | 6

Response time (secs)

4 - - 4
DataCeII, —— DataCeII, —o—
2+ © \SESEOM 2 -
/:_Q_e_r\ O-O
O 1 1 1 1 0 1 1 1 1
0 5 10 15 20 0 5 10 15 20
i-th window i-th window

Figure 5.8: Basic Performance

(Q2) SELECT max(sl.x1), avg(s2.x1)
FROM streaml sl1, stream2 s2
WHERE s1.x2 = s2.x2

5.6.1 Basic Performance

The first experiment demonstrates the response times as the windows slide.
Considering the single stream query first, we use a fixed window size, step and
selectivity. Here, we use window size |W| = 1.024 x 107 tuples, window step
|w| = 2 % 10* tuples, and 20% selectivity. This way, the DataCell plan rewriter
splits the initial window into 512 basic windows. Each time the system gets |w|
new tuples, it processes them and merges the result with those of the previous
511 basic windows.

Figure 5.8(a) shows the response times for 20 windows. For the initial win-
dow, both DataCellr and DataCellr need to process |W| tuples and achieve

130 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

similar performance. DataCell is slightly faster mainly because executing the
group-by operation on smaller basic windows yields better locality for random
access. For the subsequent sliding steps (windows 2-20), DataCellr shows the
same performance as for the first one, as it needs to perform the same amount
of work each time. DataCell;, however, benefits from incremental processing,
resulting in a significant advantage over DataCellg. Reusing the intermediate
results of previously processed basic windows, DataCell; only needs to process
the |w| tuples of the new basic window, and merge all intermediate results.
This way, DataCell; manages to fully exploit the ideas of incremental process-
ing even though it is designed over a typical DBMS kernel. It nicely blends the
best of the stream and the DBMS world.

For the double stream query, Query 2, we treat both streams equally, using
window size |[W| = 1.024 * 10° and window step |w| = 1600, i.e., the initial
windows of both streams are split into 64 basic windows each. Figure 5.8(b)
shows even more significant benefits for DataCell; over DataCellg. The reason
is that Query 2, is a complex multi-stream query that contains more expensive
processing steps, i.e., join operators. DataCell effectively exploits the larger
potential for avoiding redundant work.

The fact that incremental processing beats re-evaluation is not surprising of
course (although later we will demonstrate the opposite behavior as well). What
is interesting to keep from this experiment is that by applying the incremental
logic at the query plan level we achieve a significant performance boost achieving
efficient incremental processing within a DBMS.

5.6.2 Varying Query Parameters

The processing costs of a query depend on a number of parameters related to
the semantics of the query, e.g., selectivity, window size, step size, etc. These
are not tuning parameters, but reflect the requirements of the user. In general,
the more data a query needs to handle (less selective/bigger windows, etc.), the
more incremental processing benefits as it avoids processing the same data over
and over again. In the following paragraphs, we discuss the most important of
these parameters and their implications in detail.

Selectivity

We start with Query 1, using a window size of 1.024 % 107 tuples and a step of
2% 10* tuples. By varying the selectivity of the selection predicate from 10% to
90%, we increase the amount of data that has to be processed by the group-by

Response time (secs)

5.6. EXPERIMENTAL ANALYSIS 131

(a) Vary query selectivity (Query 1) (b) Vary Join Selectivity (Query 2)
16 T T T T T T T T T T T T T T
DataCellg —*- 8 DataCellg —*—
14 .
7F 4
12 - 7 6 T

—_
o
T
1
)]
T
1

8 | 4 4t .
L 1l 3F -
6 DataCell; —e— DataCell, -
4+ 127]
i L i
2 - -

0 - -

1 1 1 1 1 1 1 1 1 Ml N PR | N PR | N PR |
10 20 30 40 50 60 70 80 90 10°® 107 1073 1072

Selectivity (%) Selectivity (%)

Figure 5.9: Varying Selectivity

and aggregation. Figure 5.9(a) shows the results. For both DataCellr and
DataClelly, the response times for a sliding step increase close to linear with the
increasing data volume. However, the gradient for DataCellg is much steeper as
it needs to process the whole window. Incremental processing allows DataCell
to process only the last basic window, resulting in a less steep slope, and hence,
an increasing advantage over DataCellg.

A similar effect can be seen with the join query in Figure 5.9(b). We use
|W| = 1.024 % 10° and |w| = 1600 and vary the join selectivity from 1075%
to 1072%. Due to the more expensive operators in this plan, the benefits of
DataCell are stronger than before.

Window Size

For our next experiment, we use Query 1 with selectivity 20% and vary the
window size. Keeping the number of basic windows invariant at 512, the step

132 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL
(a) Vary window and step size (b) Landmark Windows (Query 3)
T T T T T T T T T
5L DataCellg —— , L DataCellg ~ |
4 | 4 25 F -
?
3 3L 4 2r]
[0}
E
5 1.5 -
g 2 T
o
73 1+ -
[0)]
o 1 | -
0.5 DataCell, —o— T
or DataCell, —o— ol) |
1 1 1 1 1 1 1 1 1 1 1 1
10° 10’ 108 0 5 10 15 20 25 30 35 40

Window size (# of tuples) i-th window

Figure 5.10: Varying Window and Step Size

size increases with the total window size. Figure 5.10(a) reports the response
time required for a sliding step using three different window sizes. The bigger
the window, i.e., the more data we need to process, the bigger the benefits
of incremental processing with DataCell; over DataCellr materializing more
than a 50% improvement. Again this clearly demonstrates the effectiveness of
our incremental design using a generic storage and execution engine.

Landmark Queries

By definition, the window size of landmark queries increases with each sliding
step, the step size is invariant. We run the following single-stream query as
landmark query, using |w| = 2.5 * 10° and 20% selectivity.

(Q3) select max(x1),sum(x2)
from stream where x1>vil

5.6. EXPERIMENTAL ANALYSIS 133

(a) Single-stream (Query 1) (b) Multi-stream (Query 2)
5 F T T T T T T T T T] 8 m T T T T T
* DataCellg (Total) ——
4 F]
2
)
~ 3 .
[0}
1S
= DataCell| (Total) ——
% = \e‘\-e-—g_—qa.\ . . A/":j
c 2 | N/ S /|
o
@
2 DataCell, (Main Plan)
1L]
DataCell, (Merge) —=-
0K 1 1 1 1 1 1 1 | | | | L Y
C T e D G % S o, Y 2 4 8 16 32 64
R e
of basic windows # of basic windows

Figure 5.11: Decreasing Step (Incr. Number of Basic Windows)

Figure 5.10(b) shows the response time for 40 successive windows. As in
Figure 5.8, MonetDB and DataCell yield very similar performance for the initial
window, where both need to process all data. The re-evaluation approach of
DataCell then makes the response time grow linearly with the growing window
size. With DataCell;, the response time for the second query drops to what
is required to process only the new basic windows, and then stays constant at
that level, exploiting the benefits of incremental processing.

Step Size

With invariant window size, decreasing the step size in turn means increasing the
number of basic windows per window, i.e., the number of intermediate results
that need to be combined per step.

Figure 5.11(a) shows the results for Query 1. We use window size w =
1.024 * 107 tuples and a selectivity of 20%. With a small number of basic
windows, i.e., with a big window step, we still need to process a relatively big
amount of data each time a window is completed. Thus, response times are still

134 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

w
(63}
T

w
T

Response time (secs)

o
(&)
T

DataCell; —o—

..........

S S ST oSSt

..........

2 . 4 8 16 | 32 64128 2565121024 512 Pieces

15 L 1 1 1 1 1 1
0 10 20 30 40 50 60

i-th window

Figure 5.12: Query Plan Adaptation

quite high, e.g., for 2 basic windows. However, as the number of basic windows
increases, DataCell; improves quickly until it stabilizes once fixed initialization
costs dominate over data-dependent processing costs.

Figure 5.11(a) also breaks down the cost of DataCell; into two components.
First, is the actual query processing cost, i.e., the cost spent on the main oper-
ators of the plan that represent the original plan flow. Second is the merging
cost, i.e., all additional operators needed to support incremental processing, i.e.,
operators for merging intermediates, performing the transitions at the end of a
query plan and so on. Figure 5.11(a) shows that the cost of merging becomes
negligible. The main component is the query processing cost required for the
original plan operators.

Notice also that there is a small rise in the total incremental cost with many
basic windows (i.e., >1024 in Fig. 5.11(a)). This is attributed to the query

5.6. EXPERIMENTAL ANALYSIS 135

processing cost which as we see in Figure 5.11(a) follows the same trend. What
happens is that with more basic windows, a larger number of intermediates
are maintained. Their total size remains invariant. However, with more basic
windows, there are more (though smaller) intermediates to be combined and
thus more operator calls required to make these combinations (the group-by)
in this case. The administrative cost of simply calling these operators becomes
visible with many basic windows.

Figure 5.11(b) shows a similar experiment for Query 2. Overall the trend
is similar, i.e., cutting the stream window into smaller basic windows, brings
benefits. The big difference though is that the break down costs indicate an
opposite behavior than with Query 1. This time, the query processing cost be-
comes negligible while the merging cost is the one that dominates the total cost
once the query processing part becomes small. The reason is that the interme-
diates this time are quite big, meaning that simply merging those intermediates
is significantly more expensive. This cost is rather stable given that the total
size of intermediates is invariant with invariant window size, regardless of the
step size.

5.6.3 Optimization

As discussed in Section 5.4 and supported by the results of the above experi-
ments, the response time of incremental DataCell plans can further be improved
by pro-actively processing the last basic window in smaller chunks than the step
size defined in the query. This way, we favor a dynamic self-adapting approach
over a static optimization using an analytical cost model. Figure 5.12 shows the
results of an experiment, where DataCell successively doubles the number m of
chunks for a basic window every five steps as proposed in Section 5.4. Monitor-
ing the response times, DataCell observes a steady performance improvement
up to m = 512. With m = 1024, the performance starts degrading, triggering
DataCell to resort to m = 512.

5.6.4 Comparison with a Specialized Engine

Here, we test our DataCell prototype against a state-of-the-art commercial spe-
cialized engine. Due to license restrictions we refrain from revealing the actual
system and we will refer to it as SystemX. In addition, we tested a few open-
source prototypes but we were not successful in installing and using them, e.g.,
TelegraphCQ and Streams. These systems were academic projects and are not
supported anymore making it very difficult to use them (in fact we are not

136 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

aware of any stream papers comparing against any of these open-source stream
systems). For example, TelegraphCQ compiled on our contemporary Fedora 12
system only after fixing some architecture-specific code. However, we did not
manage to analyze and fix the crashes that occurred repeatedly when running
continuous queries. System Streams seemed to work correctly but the function-
alities of getting the performance metrics did not work. The most important
issue though is that it does not support sliding windows with a slide bigger
than a single tuple. Nevertheless, we are confident that comparison against a
most up-to-date version of a state-of-the-art commercial engine provides a more
competitive benchmark for our prototype.

For this experiment, we use the double stream Query 2. The metric reported
is the total time needed for the system to consume a number of sliding windows
and produce all results. Using a total of 100 windows and 64 basic windows per
window, we vary the window size between |[W| = 103 and |W| = 10° tuples with
the respective step size growing from |w| = |[W|/64 = 16 to |w| = |W|/64 = 1600
tuples. Thus, in total, we feed the system |[W|+ 100 * |w| = 2600 tuples in the
most lightweight case and with [W| + 100 * [w| = 260000 tuples in the most
demanding case.

Previous experiments demonstrated purely the query processing performance.
Here, we test the complete software stack of DataCell, i.e., data is read from an
input file in chunks. It is parsed and then it is passed into the system for query
processing. The input file is organized in rows, i.e., a typical csv file. Data-
Cell has to parse the file and load the proper column/baskets for each batch.
Similarly for SystemX. For all systems, we made sure that there is no extra
overhead due to tuple delays, i.e., the system never starves waiting for tuples,
representing the best possible behavior.

Figure 5.13 shows the results. It is broken down into Figure 5.13(a) for
small windows, i.e., smaller than 10* tuples and into Figure 5.13(b) for bigger
windows. For very small window sizes, we observe that plain DataCell gives
excellent results, even outperforming the stream solutions in the smaller sizes.
The amount of data to be processed is so small that simply the overhead involved
around the incremental logic in a stream implementation becomes visible and
decreases performance. This holds for both DataCell; and SystemX, with the
latter having a slight edge for the very small sizes.

Response times though are practically the same for all systems as they are
very small anyway. However, as the window and step size grow, we observe a
very different behavior. In Figure 5.13(b), we see that plain DataCell is losing
ground to DataClell;. This time, the amount of data and thus computation
needed becomes more and more significant. The straight-forward implementa-

5.6. EXPERIMENTAL ANALYSIS

6 T
SystemX
DataCellg =

5 - -
DataCell, —o—

4 - i

Total time (secs)
w
T
|

N
T
1

0 1 1
5 10

Window size (tuples*1000)

—_

1400

1200

1000

800

600

400

200

137

25 50 75 100
Window size (tuples*1000)

Figure 5.13: Comparison with a Stream Engine

tion of stream processing in a DBMS cannot exploit past computation leading
to large total costs. In addition, we see another trend; DataCell scales nicely
with the window size and now becomes the fastest system.

SystemX fails to keep up with DataCell; and even plain DataCell. When
going for large amounts of data and large windows, batch processing as exploited
in DataClelly, gains a significant performance gain over the typical one tuple at
a time processing of specialized engines. The main reason is that we amortize
the continuous query processing costs over a large number of tuples as opposed
to a single one. In addition, the incremental logic overhead is moved up to the
query plan as opposed to each single operator.

Modern trends in data warehousing and stream processing support this mo-
tivation (Winter and Kostamaa, 2010) where continuous queries need to handle
huge amounts of data, e.g., in the order of Terabytes while the current litera-
ture on stream processing studies only small amounts of data, i.e., 10 or 100

138 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

100 F | =
§ 10 b Total .
L .]
GE) I Query processing —&— |
Fo1E E

01 F Loading —&—]
0.01 | .

[| | | | | | i
1 10 25 50 75 100

Window size (tuples*1000)

Figure 5.14: DataCell; break down costs

tuples per window in which case tuple at a time processing behaves indeed well.
An interesting direction is hybrid systems, i.e., provide both low-level incre-
mental processing as current stream engines and high level as we do here, and
interchange between different paradigms depending on the environment.
Finally, Figure 5.14 breaks down the DataCell; costs seen in the previous
figure into pure query processing costs and loading costs, i.e., the costs spent in
parsing and loading the input file. We see that query processing is the major
component while loading represents only a minor fraction of the total cost.

5.7 Conclusions

In this chapter, we have shown that incremental continuous query processing can
efficiently and elegantly be supported over an extensible DBMS kernel. These
results open the road for scalable data processing that combines both stored and
streaming data in an integrated environment in modern data warehouses. This
is a topic with strong interest over the last few years and with a great potential

5.7. CONCLUSIONS 139

impact on data management, in particular for business intelligence and science.
Building over an existing modern DBMS kernel to benefit from existing scalable
processing components, continuous query support is the missing link. Here, we
study in this context one of the most critical problems in continuous query
processing, i.e., window based incremental processing.

Essentially, incremental processing is designed and implemented at the query
plan level allowing to fully reuse (a) the underlying generic storage and execution
engine and (b) the complete optimizer module. In comparison with a state-of-
the-art commercial DSMS, DataCell achieves similar performance with small
amounts of data, but quickly gains a significant advantage with growing data
volumes, bringing database-like scalability to stream processing.

The following chapter concludes the thesis and discusses a number of inter-
esting open topics and research directions towards a complete data management
architecture that integrates database and stream functionalities in the same ker-
nel. DataCell opens the road for an exciting research path by looking at the
stream query processing issue from a different perspective and by taking into
account the needs of modern data management applications for scalable stream
processing combined with traditional query processing. The range of topics dis-
cussed in this chapter include multi-query processing, adaptive query processing,
query relaxation, distributed processing, and realizing DataCell in alternative
architectures.

140 CHAPTER 5. INCREMENTAL PROCESSING IN DATACELL

Chapter 6

Conclusions and Future
Research Paths®

In this thesis, we set the roots for a novel data management architecture that
naturally integrates database and stream query processing inside the same query
engine. As we discussed in the beginning of the thesis, there is a large demand
nowadays to combine efficient and scalable stream and one-time processing. We
start with a modern column-store architecture, realized in the MonetDB system,
and we design our new system in this kernel. Column-store architectures offer
the requirement for efficient one time processing and our main contribution here
is the design of a column-store system that can do both stream and one-time
processing efficiently.

The reason to choose this research direction comes from today’s application
requirements to support both processing models providing advanced processing
in both cases. So far the research community used to deal with this scenario in
two ways. The first way is by trying to build specialized stream systems that in
addition to stream processing provide simple processing of persistent /historical
data. However, in this case, we are not able to reach the sophisticated tech-
niques of mature database systems, especially when we need to support complex
queries and/or big data analysis. An alternative direction is to externally con-

*Part of the material in this chapter has been presented at VLDB11 PhD Workshop paper
“DataCell: Building a Data Stream Engine on top of a Relational Database Kernel.” (Liarou
and Kersten, 2009) and at the PVLDB11 paper “The Researcher’s Guide to the Data Deluge:
Querying a Scientific Database in Just a Few Seconds” (Kersten et al., 2011).

141

142 CHAPTER 6. CONCLUSIONS

nect and synchronize under the same middleware two specialized processing
engines, i.e., a separate data stream engine and a separate DBMS, assigning
different processing tasks to each one of them. The vision of an integrated pro-
cessing model, has been considered in the past in the context of active databases
and database triggers. However, it was soon rejected once the requirements of
streaming applications became demanding for near real-time processing, multi-
query optimizations and adaptive query processing; these are concepts that at
this moment were new and different from the ones of the original database sce-
narios. In this thesis, we reconsider the path to implant on-line capabilities
within a modern column-store database kernel in a way that we can efficiently
synthesize and support interesting scenarios with streaming and database func-
tionalities. In the DataCell project we exploit, reuse, redirect and extend the
useful parts that the existing database technology already offers, to support a
more complete query processing scenario, where the need of active and passive
processing co-exist.

In this chapter, we will discuss and summarize our contributions to this
research direction. We will also discuss a number of interesting future research
topics towards scalable and efficient stream and one-time query systems, e.g.,
multi-query processing, adaptive query processing, query relaxation, distributed
processing, etc.

6.1 Contributions

Basic DataCell Architecture

In this thesis, we introduced the basic DataCell architecture to exploit the notion
of scalable systems that can provide both streaming and database functionality.
We first showed the minimal additions that allow for stream processing within
a DBMS kernel. The unique goal of DataCell is to exploit, as much as possi-
ble, all the available infrastructure offered by the underlying database kernel.
In this way, we built our system using the majority of the original relational
operators and optimization techniques, elevating the streaming functionality
mainly at the query plan and scheduling level. The first DataCell architecture
(Chapter 3) resulted in a model that allows to repeatedly run queries over in-
coming data as new data continuously arrives. Already this model was shown
to provide substantially good streaming performance mainly by exploiting the
power of modern column-store architectures. We were able to run the complete
Linear Road benchmark and be well within the timing requirements set in the

6.2. LOOKING AHEAD 143

benchmark (see Section 3.5.2).

Incremental Processing

With the basic DataCell architecture at hand, the next step was to work on ma-
jor stream functionalities. The topic we dealt with was incremental processing;
this is necessary in order to be able to efficiently support window continuous
queries over streaming data. Most relational operators underlying traditional
DBMSs cannot operate incrementally without a major overhaul of their imple-
mentation. Here, we show that efficient incremental stream processing is pos-
sible in a DBMS kernel handling the problem at the query plan and scheduling
level. For this to be realized, the relational query plans are transformed in such
a way that the stream of data is continuously broken into pieces and different
portions of the plan are assigned to different portions of the focus window data.
DataCell takes care that this “partitioning” happens in such a way that we can
exploit past computation during future windows. We illustrated the methods to
extend a modern column-store with the ability to create and rewrite incremen-
tal query plans. The end result was efficient and crucially scalable incremental
processing. As we show in this thesis, DataCell with incremental processing
available can be much faster and scalable than a state of the art commercial
stream system (Chapter 5).

6.2 Looking Ahead

In this thesis, we made the first steps towards a complete data management
architecture that integrates database and data stream functionalities in the same
kernel. DataCell fundamentally changes the way that stream data is handled
and processed, trying to exploit many traditionally core database techniques
and ideas.

In this way, DataCell brings a significantly different view on how to build
stream systems and radically changes the way we process data streams. Thus, it
also brings the need to reconsider several of the well established techniques in the
stream processing area. The road-map for DataCell research calls for innovation
in many important stream processing areas. In the rest of this section, we will
touch on these topics and where possible we will also provide discussion on
possible research paths for solving these problems in the DataCell context.

144 CHAPTER 6. CONCLUSIONS

6.2.1 Multi-Query Processing

A critical issue is that of multi-query processing and the rich scheduling op-
portunities that control the interaction between multiple continuous queries.
In traditional stream processing, this area has received a lot of attention with
several innovative solutions, e.g., (Sharaf et al., 2008). DataCell offers all the
available ingredients to achieve similar levels of multi-query optimizations, while
keeping the underlying generic engine intact. Below we discuss some of these
directions.

Splitting and Merging Factories

Exploiting similarities at the query and data level is necessary in order to
meet the real-time deadlines a stream application sets. In this way, we need
to study mechanisms to efficiently and dynamically organize the queries in mul-
tiple groups based on their needs and properties. To accommodate partially
overlapping queries we also need mechanisms to dynamically split and merge
factories that wrap the query plans or parts of them.

DataCell here can adopt part of the existing literature in multi-query pro-
cessing but there is also room to investigate research opportunities that arise
from the basic DataCell processing model. One of the main innovations in Data-
Cell comes from the choice to elevate several of the stream functionalities at the
query plan and scheduling level. This allows for efficient reuse of core database
functionalities and optimizations. In this way, one of the most challenging di-
rections for multi-query processing in DataCell is the choice to split the plan
of a single query into multiple factories. The motivation for this comes from
different angles. For example, each factory in a group of factories sharing a
basket, conceptually releases the basket content only after it has completed all
operators in its query plan. Assume two query plans; a lightweight query ¢; and
a heavy query g2 that needs a considerably longer processing time compared to
g1. With the shared baskets strategy (see Section 3.3.2), we force g1 to wait
until go finishes before we allow the receptor to place more tuples in the shared
basket such that g; can run again. A simple solution is to split a query plan into
multiple parts, such that part of the input can be released as soon as possible,
effectively eliminating the need for a fast query to wait for a slow one.

Another natural direction once we decide to split query plans into multiple
factories, is the possibility to share both the baskets and the execution cost.
For example, queries requiring similar ranges in selection operators can be sup-
ported by shared factories that give output to more than one query’s factories.

6.2. LOOKING AHEAD 145

Auxiliary factories can be plugged in to cover overlapping requirements.

DataCell Cracking

Another interesting direction for multi-query processing in DataCell is to exploit
the idea of database cracking (Idreos, 2010). Database cracking was proposed
as an adaptive indexing technique in the context of column-stores with bulk
processing. The idea is that data is continuously physically reorganized building
indexes incrementally and adaptively based on the requests of incoming queries.
DataCell scheduling can exploit such ideas by allowing similar queries to run over
the same baskets in a particular order. These queries can then use cracking-like
ideas to continuously reorganize the basket and thus allowing successive queries
to operate faster and faster for a given batch of incoming tuples. Challenges
here include the dynamic scheduling of queries, i.e., which queries to allow to
crack which baskets and in which order. Cracking is very sensitive in the order
we process queries as this affects the kind of clustering and thus optimization
achieved. Other challenges include finding a good balance between investment
and amortization of the investment as in normal databases any index built can
be exploited “forever”, while in our case the cracked baskets will only be useful
for a given window of time.

6.2.2 Adaptation

Adaptive query processing is another very important issue in data streams. Dy-
namic changes to the arrival rate of data streams and on correlations between
the incoming data, drastically affect the computation value of the continuously
executed operations. In addition, new continuous queries are submitted over
time while some of the old ones may expire and this changes the overall query
processing behavior of the system. In this context, static query optimizations
made up-front may not be valid after some time. Below we discuss some inter-
esting directions for DataCell in this context.

Adaptive Behavior in Traditional Streams

Many academic prototypes presented extensive work on this topic. For example,
StreaMon (Babu and Widom, 2004), the adaptive query processing infrastruc-
ture of STREAM (Arasu et al., 2003), collects statistics about stream and query
plan characteristics and takes the appropriate actions to always ensure that the

146 CHAPTER 6. CONCLUSIONS

query plan and memory usage are optimal for the current input characteris-
tics. TelegraphCQ (Chandrasekaran et al., 2003) constructs query plans with
adaptive routing modules, called Eddies (Avnur and Hellerstein, 2000). Thus,
it is able to proceed to continuous run-time optimizations, dynamically adapt-
ing to the workload. Eddies modules adaptively decide how to route data to
appropriate query operators on a tuple-by-tuple basis.

Adaptive Behavior in DataCell

Several key steps in the DataCell architecture are already adaptive in nature.
Once a query is submitted in DataCell, it is parsed, compiled, optimized and
then ends up to the pool with the other continuous queries, waiting to start
processing incoming stream tuples. We first see an adaptive behavior when
a factory considers how to proceed to the processing of the incoming chunk
of data. It dynamically decides which way to evaluate the query, choosing
between incremental processing and the re-evaluation method. As we have seen,
window queries in periods with a low rate of incoming tuples can by default be
executed according to the re-evaluation model. Once the arrival rate of the data
streams becomes extremely high or bursty, the factory proceeds to a dynamic
self-adaptive solution to find the optimal chunk size and proceed to incremental
processing of the partial chunks.

By default DataCell starts with full re-evaluation, considering that the pro-
cessing chunk is the same as the window size. Then, we successively modify the
chunk size monitoring the response time for a couple of sliding steps. As long
as the response times decrease by increasing the number of chunks in a window,
we keep increasing this number. Only once the increasing merging overhead
out-weights the decreasing processing costs, the response times increase, again.
Then, we stop increasing the number of chunks and reset it to the value that
resulted in the minimum response time.

Adaptive DataCell Query Plans

Most of the past work on adaptive query processing in stream systems naturally
focuses on adaptive query plans, i.e., choosing different plan configurations for
a given query depending on changes in the environment, the system, the data
and the queries. The adaptive features discussed for DataCell above are mainly
at a different level that has to do with the administration of the system and the
resources.

6.2. LOOKING AHEAD 147

However, there is plenty of room for more optimization by considering adap-
tation at the query plan level too that goes beyond the choice of re-evaluation
and incremental evaluation. For example, choosing different shape of query
plans depending also on multi-query processing issues can be of crucial impor-
tance. Thus, again the choice of how to organize factories, how to dynamically
split and merge query plans depending on the changes of the environment be-
comes an important issue.

At this point we should mention that given the modern column-store roots
of DataCell, we already exploit some adaptive optimization at run time. Even if
the query plan is static and optimized only once, at the submission time of the
query, the operators are evaluated in a dynamic way. Given the bulk processing
model, each operator knows exactly what is its input at execution time. For
example, before executing a join we have first collected all tuples from both join
inputs which means that we know their size, properties such as cardinality and
possibly other data quality properties that allow us to dynamically decide the
proper join algorithm.

However, full re-optimization and full adaptive query processing that allow
the system to quickly adapt and continuously match the workload is a manda-
tory feature of modern stream engines. Here DataCell research can exploit ideas
such as dynamic sampling and possible re-optimization if initial choices seem
wrong, etc.

6.2.3 Dualism

In the DataCell context we have challenges that arise by combining the two
query processing paradigms in one. More and more applications require this
functionality and we can naturally expect that this will become a more main-
stream processing model in the coming years. For example, this applies to
scientific databases as well as in social networks where new data continuously
arrives and needs to be combined with past data.

Once the technology of merging both continuous and one-time query process-
ing becomes more mature, we expect a plethora of rich topics to arise especially
when optimization becomes an issue. For example, query plans that touch both
streaming data and regular tables might require new optimizer rules or adapta-
tions of the current ones. There, all the choices made in respect to optimizing
single continuous or one-time queries need reconsideration. Similarly for multi-
query processing. Overall, DataCell opens the road for an exciting research path
by looking at the stream query processing issue from a different perspective.

148 CHAPTER 6. CONCLUSIONS

6.2.4 Query Relaxation

Pure stream systems traditionally focus on small scale applications with a rather
small rate of incoming data. Nowadays, though, the requirements are changing
towards systems that should be able to handle data streams of Terabytes on
a daily basis. For example, scientific databases and large corporate databases
create a huge pile of new data each day and need to run the same queries
over and over again, combine past data with new ones and so on (Winter and
Kostamaa, 2010).

Typical stream systems are not designed with such workloads in mind. With
DataCell we make a significant step towards scalable stream processing by ex-
ploiting modern column-store features such as bulk processing and vectorized
processing. However, as the data grows even more and in order to support
new kinds of applications such as scientific databases we need to rethink certain
query processing assumptions. For example, complete answers are often not
possible due to the limited resources given the workload. Furthermore, the ex-
ploration and comprehension of data streams with a very high rate of incoming
data, may lead to fundamentally different processing models.

In light of these challenges, we should rethink some of the strict require-
ments data stream systems adopted in the past. Next generation data stream
management systems should interpret queries by their intent, rather than as a
contract carved in stone for complete and correct answers. The continuously
generated result sets should aid the user in understanding the stream trends
and provide guidance to continue his data exploration journey as long as the
stream is coming and his requirements are possibly modified. The stream engine
would ideally interact with the users and help them continuously explore the
streaming data in a contextualized way. In the rest of this subsection, we will
discuss two possible directions towards more relaxed stream processing.

Approximate Kernels

One of the prime impediments to fast data exploration is the query execution
focus on correct and complete result sets, i.e., the semantics of SQL presupposes
that the user knows exactly what he expects and needs to monitor. The de-
sign and implementation of the query optimizer, execution engine, and storage
engine are focused towards this goal. That is, correctness and completeness
are first class citizens in modern data stream kernels. This means that when
the system needs to perform a few hard and expensive unavoidable steps, it is
designed to perform them such that it can produce the complete and correct re-

6.2. LOOKING AHEAD 149

sults. However, the query accuracy may have a significant impact on the query
processing time that potentially will lead to deadline violations.

With input data sizes growing continuously, the research path of query ap-
proximation, was born such as to cope with the demanding short response times
in stream applications. With huge data sizes that cannot be processed in a rea-
sonable time load shedding has been widely adopted by the stream community
as the most natural approach (Tatbul, 2007). There, we skip processing the
whole input (e.g., by dropping tuples or creating tuple summarizations) aiming
to save processing resources, even if this action will drastically affect our query
answers. If the user accidentally chooses an expensive monitoring condition that
produces a large result set, then a sample might be more informative and more
feasible. Unfortunately, such a sample depends on the data distribution, the
correlations, and data clustering in the data stream and the query result set.
Taking a sample can still cause significant performance degradation that surface
only at run time.

Current approximation techniques have only been studied for simple and
small scale scenarios. Sampling and load shedding allow to drop part of the
workload by completely ignoring certain incoming tuples. Summarization tech-
niques create summaries over the data allowing to query the smaller summary
and get a quick approximate response. For scientific databases though, even
creating such summaries on the daily stream of Terabytes becomes a challenge
on its own. Specifically, in stream processing it may not be worth creating
summaries for small windows of data.

The above techniques require either a significant preprocessing step which
can be prohibitive in large scale data or a strict up-front isolation of certain
input parts. Here, we scrabble a novel direction where approximation becomes
the responsibility of individual operators allowing a query processing kernel to
self-organize and decide on-the-fly how to better exploit a given resource budget.
For example, a hash-join may decide not to prompt the hash table for a given
set of the inner, or after hitting a bucket where it has to follow a long list it
may decide to skip this tuple of the inner.

The idea is to address the problem at its root; we envision a kernel that
has rapid reactions on user’s requests. Such a kernel differs from conventional
kernels by trying to identify and avoid performance degradation points on-the-
fly and to answer part of the query within strict time bounds, but also without
changing the query focus. Its execution plan should be organized such that a
(non-empty) answer can be produced within 7" seconds.

Although such a plan has a lot in common with a plan produced by a con-
ventional cost-based optimizer, it may differ in execution order, it may not let

150 CHAPTER 6. CONCLUSIONS

all operators run to completion, or it may even need new kinds of operators. In
other words, an approximate kernel sacrifices correctness and completeness for
performance. The goal is to provide a quick and fully interactive gateway to the
data until the user has formulated a clear view of what he is really searching
for, i.e., it is meant as the first part of the exploration process.

At this point note that the stream world has already sacrificed completeness
and correctness when the window processing model was introduced in order to
bound the infinite inputs. However, this has the same effect as with sampling
and it cannot always guarantee good performance as the quality of the data
may force expensive operations.

For example, very often during a plan we need to sort large sets of rowIDs
to guarantee sequential data access. Those can be replaced by a cheaper clus-
tering method or we can refrain from data access outside the cache. Like-
wise, operations dealing with building auxiliary structures over the complete
columns/tables, can be broken up into their piecewise construction. Building
just enough within 7" to make progress in finding an answer. If T is really
short, e.g., a few seconds, the plan may actually be driven from what is already
cached in the memory buffers. In a modern server, it is just too expensive to
free up several Gigabytes of dirty memory buffers before a new query can start.
Instead, its memory content should be used in the most effective way. In the re-
maining time the memory (buffer) content can be selectively replaced by cheap,
yet promising, blocks. With a time budget for processing, the execution engine
might either freeze individual operators when the budget has been depleted, or
it might replace expensive algorithms with approximate or cheaper alternatives.

These ideas extend from high level design choices in operators and algorithms
all the way to lower level (hardware conscious) implementation details. For
example, during any algorithm if we reach the case where we need to extend,
say, an array in a column-store with a realloc, an algorithm in that kernel may
choose to skip this step if it will cause a complete copy of the original array.

This sketch is just the tip of the iceberg, i.e., numerous examples and vari-
ations can be conceived. The key challenge is to design a system architecture
where budget distribution can be dynamically steered in such a way that the
query still produces an informative result set. Aside from a tedious large-scale
(re-)engineering effort to build a kernel on this assumption, major research ques-
tions arise. For example:

e How is the budget spread over the individual operators?

e What actions are operators allowed to take to stay within the budget?

6.2. LOOKING AHEAD 151

e How to harvest the system state produced by previous queries?

e How to replace the relational operators and index constructors with in-
cremental versions?

e What all this means for dynamic and continuous adaptation of stream
plans?

e How do such ideas combine with multi-query processing ideas in streaming
environments?

At first sight the above ideas do not fit with the initial goal of DataCell
to use existing and optimized database operators in order to exploit mature
database technology. However, as we discussed in this section, the requirements
of radically new applications such as scientific databases and social networks
go way beyond what current technology can support which implies that drastic
changes are required. Ideas such as the one discussed above apply both to
traditional databases and to stream processing. For example, in the context of
the DataCell the basic architecture could remain the same while the underlying
core operators are updated to their approximate alternatives.

Query Morphing

In the same spirit as with the approximate kernels ideas presented above, we
can also extend the ideas of approximate query processing to the actual patterns
of the queries posed by the user. In this paragraph, we scrabble the vision
where a stream processing kernel participates more actively in the complete
query processing experience of the user, offering an additional mechanism that
provides query pattern suggestions. According to the standard way a DSMS
works, a user should first have a general clear idea of what to expect from
the incoming data stream and then formulate and submit the corresponding
continuous queries. However, when we are dealing with streams with high rates
of incoming tuples, and our perspective on incoming data is not still clear or
may be drastically modified depending on dynamic conditions, we could end
up “missing” valuable stream data and wasting resources on analysis that ends
up not being useful. For example, this can easily happen when our original
continuous queries are not representative enough, of what we really wanted to
monitor giving zero-hit or mega-hit result sets. This phenomenon is typical in
exploratory scenarios such as scientific databases. Expensive query processing,
in conjunction with the rapidly incoming data steams, trigger the vision for a
data stream kernel that becomes a query consultant.

152 CHAPTER 6. CONCLUSIONS

e
Aoy

0

Figure 6.1: Query Morphing

We introduce the notion of query morphing as an integral part of query
evaluation. It works as follows, the user gives a starting query @ and most of
the effort T is spent on finding the “best” answer for (). But a small portion is
set aside for the following exploratory step. The query is syntactically adjusted
to create variations Q);, i.e., with a small edit distance from). The process of
query morphing is visualized on the left part of Figure 6.1. The user’s original
request for a window stream returns the result set depicted by the small red
circle. However, the processing kernel grabs the chance to explore a wider
query/data spectrum in parallel, providing additional results for queries that
belong in the close area, surrounding the original continuous query. The arrows
that start from the red circle indicate this edit area in our example. In this
way, the user also receives the orange elliptic query results that correspond
to variations of his original request. In the right part of above figure, we see
that the user may as a next step decide to shift his interest towards another
query result, inspired by the result variations. A new query area now surrounds
the user’s request, including both past and new variations of the query. This
feature is very useful, once the user wants to monitor the incoming stream in
a wider range and not stuck to his original request. This is not a one-time
processes, as long as the input stream flows different trends could be identified
in a continuously modified context.

Several kinds of adjustments can be considered to create the query varia-
tions, e.g., addition/dropping of predicate terms, varying constants, widening
constants into ranges, joining with auxiliary tables through foreign key relation-
ships, etc. The kind of adjustments can be statistically driven from the original
submitted continuous queries, combinations of queries submitted by different
source, or cached (intermediate partial) results. Since we have already spent
part of our time on processing @), the intermediates produced along the way can
also help to achieve cheap evaluation of @Q);.

6.3. DISTRIBUTED STREAM PROCESSING 153

Of course, another crucial topic here is how this relates with the continuous
adaptation nature that a stream system should have, i.e., how these exploratory
query suggestions fit within the grand picture of continuously optimizing stream
performance as the environment changes. Similarly, for multi-query processing
there are opportunities to grab suggestions by exploiting multiple existing con-
tinuous queries and essentially transferring knowledge from one query pattern to
the next. In other words, we can use the network of queries in order to provide
suggestions about interesting queries or result sets.

The approach sketched aligns to proximity-based query processing, but it is
generalized to be driven by the query edit distance in combination with statis-
tics and re-use of intermediates. Query morphing can be realized with major
adjustments to the query optimizer, because it is the single place where normal-
ized edit distances can be easily applied. It can also use the plan generated for
Q@ to derive the morphed ones. The ultimate goal would be that morphing the
query pulls it in a direction where information is available at low cost. In the
ideal case, it becomes even possible to spend all time T" on morphed queries.

6.3 Distributed Stream Processing

With data volumes continuously growing, there is a pressing need to look into
scalable query processing. The approximate query processing ideas described in
the previous section, are a step in this direction.

However, there are more options to consider. For example, distributed query
processing has always represented a good approach in supporting bigger data
and query loads for any data management system. For example, some academic
prototypes, e.g., Borealis (Abadi et al., 2005), and commercial systems, e.g.,
(Gedik et al., 2008), have focused on this topic. Many of the ideas that have
been already proposed for distributed stream processing can also be applied in
our context. The stream engine of DataCell can become the central processing
part of each node and issues related to how we should distribute the data and
the queries, to coordination, to communication protocols, and to fault tolerance
can be handled in at a higher level, i.e., the core of the DataCell does not have
to change.

154 CHAPTER 6. CONCLUSIONS

6.4 DataCell in Different Database Kernels

The DataCell architecture is designed over modern column-store architectures.
This fact raises a valid and at the same time important question whether our
ultimate vision to include efficient stream processing in the heart of a traditional
DBMS is limited to the underlying column-store architecture. The questions we
should answer here are the following.

e Can we apply the same ideas on top of a row-store DBMS?

e How critical and unique are the column-store architecture advantages
which enable DataCell?

In the basic DataCell architecture, each query is encapsulated into a fac-
tory, i.e., a function that wraps a continuous query plan in an infinite loop.
Streaming data is temporarily collected into baskets and remains there until its
consumption by the connected factories/operators. Baskets and tables can har-
moniously co-exist and interact, while the optimization algorithms are applied
with minimal changes to both one-time and continuous queries. Note, that the
purely stream specialized optimizations, i.e., incremental processing, are only
applied to the corresponding queries.

The DataCell philosophy as briefly summarized above seems that could eas-
ily be applied in a row-store architecture, too. The existence of an intermediate
scheduler, that orchestrates the waiting factories flourished by efficient schedul-
ing polices, should certainly be implanted within the database software stack.
The parser should be extended in a way to understand and differentiate the
streaming from the persistent data, and the different query types. Thus, trans-
forming a passive data management system to an active one, seems a general
method that consists of a few straightforward key steps, and can easily be ap-
plied to any extensible system.

However, one of the main difference between DataCell’s underlying column-
store kernel with other relational row-oriented DBMSs, is the core processing
model that they obey. DataCell builds over a column-store kernel using, bulk
processing instead of volcano-style pipelining execution model and vectorized
query processing as opposed to tuple-based. It relies on operator-at-a-time
bulk processing and materialization of all (narrow) intermediate result columns.
DataCell adopts the column-at-a-time processing principle, adapting it to the
streaming singularity. Thus, without waiting “forever” to fill in the (streaming
attributes) columns with streaming data, it gets as many data are available into
chunks when the triggering condition occurs and evaluates the query plans, in

6.4. DATACELL IN DIFFERENT DATABASE KERNELS 155

a Volcano-style iteration. This logic, is quite different than the original tuple-
at-a-time model where the individual operations are invoked separately for each
tuple. However, this fundamental difference is not a prohibitive factor to pro-
ceed to the streaming transformation of a row-oriented DBMS; all we need is
to simply be able to materialize intermediates for incremental processing and
introduce a mechanism for batch processing.

The tuple-at-a-time model guarantees near real-time processing in a typical
stream application; it immediately processes each tuple once it arrives. However,
there is a drawback coming from the need to repeatedly call all operators. This
can potentially affect scalability.

Our underlying column-store architecture constitutes a crucial feature to
support DataCell’s incremental processing requirement. Intermediates are also
in column format. In this way, we did not need to change to original rela-
tional operators, since we keep in a natural way the required intermediate
state of the partial operator evaluation into the corresponding intermediate
columns/baskets inside each factory. The operators access only the newly ap-
pended streaming data and they merge the new results with the previous ones
to update the result set. The key point is to be able to split the stream and
then “freeze” and “resume” execution of a plan at the proper points.

Hence in a row-store implementation, the major extension required is to
introduce intermediate result materialization for each operator that precedes a
concat operation in the incremental plans. While this used to be considered
an unbearable overhead, row-stores implement similar techniques for sharing
intermediate results for multi-query optimization, and recently we have seen
successful exploitation of intermediates in eddies (Deshpande and Hellerstein,
2004).

Other than design issues, using column-store or row-store as the underlying
architecture comes with all the benefits or the overheads of the respective design.
Row-stores and column-stores clearly represent the extremes of the database ker-
nel architecture design space. For example, depending on the workload there
may be less I/O and memory bandwidth requirements for a column-store but
at the same time a row-store may have less requirements for intermediates ma-
terialization and thus less memory requirements. As such, another interesting
direction for DataCell is the application of the DataCell philosophy in the more
recent efforts that try to build hybrid database architectures. Again, the fea-
tures of bulk processing, selective intermediates materialization and the ability
to pause and resume execution, are all necessary for the core DataCell function-
ality.

156 CHAPTER 6. CONCLUSIONS

6.5 Summary

DataCell makes the first steps towards a complete data management architec-
ture that integrates database and stream functionalities in the same kernel. It
fundamentally changes the way that stream data is handled and processed, try-
ing to exploit many traditionally core database techniques and ideas. In this
thesis, we made the strong statement that it is possible to implant stream pro-
cessing functionalities in the heart of a modern database kernel and achieve both
state of the art one-time query performance and stream query performance.

By relying on previous major efforts made from the database community
during the last decades, we can bring several advantages on the stream process-
ing front. So far, we made the first crucial steps to this direction. However,
plenty of research challenges arise. The various open topics described in this
chapter show the research path towards a fully integrated architecture where
complex and hybrid stream-database scenarios will be expressed and performed.
Overall, DataCell opens the road for an exciting research path by looking at the
stream query processing issue from a different perspective and by taking into
account the needs of modern data management for scalable stream processing
combined with traditional query processing.

Bibliography

Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M.,
Hwang, J.-H., Lindner, W., Maskey, A. S., Rasin, A., Ryvkina, E., Tatbul,
N., Xing, Y., and Zdonik, S. (2005). The Design of the Borealis Stream Pro-
cessing Engine. In Second Biennial Conference on Innovative Data Systems
Research (CIDR).

Abadi, D. J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Erwin, C.,
Galvez, E. F., Hatoun, M., Maskey, A., Rasin, A., Singer, A., Stonebraker,
M., Tatbul, N.; Xing, Y., Yan, R., and Zdonik, S. B. (2003a). Aurora: A Data
Stream Management System. In ACM SIGMOD International Conference
on Management of Data.

Abadi, D. J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S.,
Stonebraker, M., Tatbul, N., and Zdonik, S. (2003b). Aurora: a new model
and architecture for data stream management. The VLDB Journal, 12:120—
139.

Abbott, R. and Garcia-Molina, H. (1989). Scheduling Real-time Transactions
with Disk Resident Data. In Proc. of the Int’l. Conf. on Very Large Data
Bases (VLDB).

Abbott, R. K. and Garcia-Molina, H. (1992). Scheduling Real-Time Transac-
tions: A Performance Evaluation. ACM Trans. Database Syst., 17:513-560.

Abiteboul, S., Agrawal, R., Bernstein, P., Carey, M., Ceri, S., Croft, B., DeWitt,
D., Franklin, M., Molina, H. G., Gawlick, D., Gray, J., Haas, L., Halevy, A.,
Hellerstein, J., Ioannidis, Y., Kersten, M., Pazzani, M., Lesk, M., Maier, D.,
Naughton, J., Schek, H., Sellis, T., Silberschatz, A., Stonebraker, M., Snod-
grass, R., Ullman, J., Weikum, G., Widom, J., and Zdonik, S. (2005). The
Lowell Database Research Self-Assessment. Communications of the ACM,
48(5):111-118.

Ali, M. H., Gerea, C., Raman, B. S., Sezgin, B., Tarnavski, T., Verona, T.,

157

158 BIBLIOGRAPHY

Wang, P., Zabback, P., Kirilov, A.,; Ananthanarayan, A., Lu, M., Raizman,
A., Krishnan, R., Schindlauer, R., Grabs, T., Bjeletich, S., Chandramouli,
B., Goldstein, J., Bhat, S., Li, Y., Nicola, V. D., Wang, X., Maier, D.,
Santos, I., Nano, O., and Grell, S. (2009). Microsoft CEP Server and Online
Behavioral Targeting. Proc. VLDB Endow. (PVLDB), 2(2):1558-1561.

Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, 1., Rosenstein,
J., and Widom, J. (2003). STREAM: The Stanford Stream Data Manager.
In ACM SIGMOD International Conference on Management of Data.

Arasu, A., Cherniack, M., Galvez, E. F., Maier, D., Maskey, A., Ryvkina, E.,
Stonebraker, M., and Tibbetts, R. (2004). Linear Road: A Stream Data
Management Benchmark. In Proc. of the Int’l. Conf. on Very Large Data
Bases (VLDB).

Avnur, R. and Hellerstein, J. M. (2000). Eddies: continuously adaptive query
processing. SIGMOD Record, 29:261-272.

Babcock, B., Babu, S., Datar, M., and Motwani, R. (2003). Chain: Opera-
tor Scheduling for Memory Minimization in Data stream systems. In ACM
SIGMOD International Conference on Management of Data.

Babcock, B., Babu, S., Datar, M., Motwani, R., and Thomas, D. (2004). Opera-
tor Scheduling in Data Stream Systems. The VLDB Journal, 13(4):333-353.

Babu, S. and Widom, J. (2004). StreaMon: An Adaptive Engine for Stream
Query Processing. In ACM SIGMOD International Conference on Manage-
ment of Data. ACM.

Balakrishnan, H., Balazinska, M., Carney, D., Centintemel, U., Cherniack, M.,
Convey, C., Galvez, E., Salz, J., Stonebraker, M., Tatbul, N., Tibbetts,
R., and Zdonik, S. (2004). Retrospective on Aurora. The VLDB Journal,
13(4):370-383.

Bancilhon, F., Barbedette, G., Benzaken, V., Delobel, C., Gamerman, S.,
Lecluse, C., Pfeffer, P., Richard, P., and Velez, F. (1988). The Design and
Implementation of O2. In Lecture notes in Computer Science on Advances in
Object-Oriented Database Systems, pages 1-22. Springer-Verlag New York,
Inc.

Boncz, P., Wilschut, A., and Kersten, M. (1998). Flattening an Object Algebra
to Provide Performance. In Proc. of the Int’l. Conf. on Database Engineering
(ICDE).

Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G.,
Stonebraker, M., Tatbul, N., and Zdonik, S. (2002). Monitoring Streams: A
New Class of Data Management Applications. In Proc. of the Int’l. Conf.
on Very Large Data Bases (VLDB).

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein,

BIBLIOGRAPHY 159

J. M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., and
Shah, M. A. (2003). TelegraphCQ: Continuous Data- flow Processing for an
Uncertain World. In Proc. of the Int’l Conf. on Innovative Database Systems
Research (CIDR).

Chandrasekaran, S. and Franklin, M. J. (2002). Streaming Queries Over Stream-
ing Data. In Proc. of the Int’l. Conf. on Very Large Data Bases (VLDB).
Chen, J., Dewitt, D. J., Tian, F., and Wang, Y. (2000). NiagaraCQ: A Scal-
able Continuous Query System for Internet Databases. In ACM SIGMOD

International Conference on Management of Data.

CODASYL Data Description Language Committee (1973). CODASYL Data
Description Language. Journal of Development.

Codd, A. (1970). A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6).

Copeland, G. and Khoshafian, S. (1985). A Decomposition Storage Model. In
ACM SIGMOD International Conference on Management of Data.

Coral8, I. (2007). http://www.coral8.com.

Cranor, C. D., Johnson, T., Spatscheck, O., and Shkapenyuk, V. (2003). Gi-
gascope: A Stream Database for Network Applications. In ACM SIGMOD
International Conference on Management of Data.

Dayal, U., Blaustein, B., Buchmann, A., Chakravarthy, U., Hsu, M., Ledin,
R., McCarthy, D., Rosenthal, A., Sarin, S., Carey, M. J., Livny, M., and
Jauhari, R. (1988). The HiPAC project: combining active databases and
timing constraints. SIGMOD Record, 17:51-70.

Deshpande, A. and Hellerstein, J. M. (2004). Lifting the Burden of History from
Adaptive Query Processing. In Proc. of the Int’l. Conf. on Very Large Data
Bases (VLDB).

Dobra, A., Garofalakis, M., Gehrke, J., and Rastogi, R. (2002). Processing Com-
plex Aggregate Queries over Data Streams. In ACM SIGMOD International
Conference on Management of Data.

Eisenberg, A., Melton, J., Kulkarni, K. G., Michels, J.-E., and Zemke, F. (2004).
SQL:2003 Has been published. SIGMOD Record, 33(1):119-126.

Eswaran, K. P. (1976). Aspects of a Trigger Subsystem in an Integrated
Database System. In Proc. of the Int’l. Conf. on Software engineering
(ICSE).

Eswaran, K. P. and Chamberlin, D. D. (1975). Functional Specifications of a
Subsystem for Data Base Integrity. In Proc. of the Int’l. Conf. on Very Large
Data Bases (VLDB).

Fausto, P. B., Bernstein, P. A., Giunchiglia, F., Kementsietsidis, A., Mylopou-
los, J., Serafini, L., and Zaihrayeu, I. (2002). Data Management for Peer-to-

160 BIBLIOGRAPHY

Peer Computing: A Vision. In Proceedings of the International Workshop
on the Web and Databases (WebDB).

Folding@home (2000). http://folding.stanford.edu. (last accessed on April
2011).

Franklin, M. J., Krishnamurthy, S., Conway, N., Li, A., Russakovsky, A., and
Thombre, N. (2009). Continuous Analytics: Rethinking Query Processing in
a Network-Effect World. In Proc. of the Int’l Conf. on Innovative Database
Systems Research (CIDR).

Gedik, B., Andrade, H., Wu, K.-L., Yu, P. S., and Doo, M. (2008). SPADE: the
system s declarative stream processing engine. In ACM SIGMOD Interna-
tional Conference on Management of Data.

Gedik, B. and Liu, L. (2003). PeerCQ: A Decentralized and Self-Configuring
Peer-to-Peer Information Monitoring System. In Proceedings of International
Conference on Distributed Computing Systems (ICDSC).

Gettier, E. (1963). Is justified true belief knowledge? Analysis, 23:121-123.

Ghanem, T. M. et al. (2007). Incremental Evaluation of Sliding Window Queries
over Data Streams. IEEFE Transactions on Knowledge and Data Engineering
(TKDE), 19(1):57-72.

Girod, L. et al. (2007). The Case for a Signal-Oriented Data Stream Manage-
ment System. In Proc. of the Int’l Conf. on Innovative Database Systems
Research (CIDR).

Gnutella (2000). http://gnutella.wego.com. (last accessed on March 2010).

Golab, L. (2006). Sliding Window Query Processing over Data Streams. PhD
thesis, University of Waterloo.

Hanson, E. N. (1996). The Design and Implementation of the Ariel Active
Database Rule System. IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), 8(1):157-172.

Haritsa, J. R., Carey, M. J., and Livny, M. (1990). On Being Optimistic
about Real-Time Constraints. In Proceedings of the ninth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems (PODS).

Harizopoulos, S., Shkapenyuk, V., and Ailamaki, A. (2005). QPipe: a simulta-
neously pipelined relational query engine. In ACM SIGMOD International
Conference on Management of Data.

Huebsch, R., Hellerstein, J. M., Lanham, N., Loo, B. T., Shenker, S., and Stoica,
I. (2003). Querying the internet with PIER. In Proc. of the Int’l. Conf. on
Very Large Data Bases (VLDB).

Idreos, S. (2010). Database Cracking: Towards Auto-tuning Database Kernel.
PhD thesis, University of Amsterdam.

ISO-ANSI (1990). ISO-ANSI Working Draft: Database Language SQL2 and

BIBLIOGRAPHY 161

SQL3. ISO/IEC JTC1/5C21/WG3, X3H2/90/398.

Ivanova, M., Kersten, M., Nes, N., and Goncalves, R. (2009). An Architecture
for Recycling Intermediates in a Column-store. In ACM SIGMOD Interna-
tional Conference on Management of Data.

Jain, N.; Amini, L., Andrade, H., and King, R. (2006). Design, Implementation,
and Evaluation of the Linear Road Benchmark on the Stream Processing
Core. In ACM SIGMOD International Conference on Management of Data.

Kang, J. et al. (2003). Evaluating window joins over unbounded streams. In
Proc. of the Int’l. Conf. on Database Engineering (ICDE).

Kao, B. and Garcia-Molina, H. (1993). An overview of real-time database sys-
tems. Technical Report 1993-6, Stanford University.

Karger, D. R. and Quan, D. (2005). What Would it Mean to Blog on the
Semantic Web? Journal of Web Semantics, 3(2-3):147-157.

KazaA (2001). http://www.kazaa.com. (last accessed on June 2004).

Kersten, M., Idreos, S., Manegold, S., and Liarou, E. (2011). The Researcher’s
Guide to the Data Deluge: Querying a Scientific Database in Just a Few
Seconds. Proc. VLDB Endow. (PVLDB), 4(4):1558-1561.

Kersten, M., Liarou, E., and Goncalves, R. (2007). A Query Language for a
Data Refinery Cell. In Proceedings of the International Workshop on Event
Driven Architecture and FEvent Processing Systems (EDA-PS).

LHC (2010). Large Hadron Collider. http://lhc.web.cern.ch/lhc/.

LHC@home (2004). http://lhcathome.web.cern.ch. (last accessed on April
2011).

Li, J., Maier, D., Tufte, K., Papadimos, V., and Tucker, P. A. (2005). No
Pane, No Gain: Efficient Evaluation of Sliding-Window Aggregates over Data
Streams. SIGMOD Record, 34(1):39-44.

Liarou, E., Goncalves, R., and Idreos, S. (2009). Exploiting the Power of Rela-
tional Databases for Efficient Stream Processing. In Proc. of the Intl. Conf.
on Extending Database Technology (EDBT).

Liarou, E., Idreos, S., Manegold, S., and Kersten, M. (2012a). Enhanced Stream
Processing in a DBMS Kernel, Under Submition.

Liarou, E., Idreos, S., Manegold, S., and Kersten, M. (2012b). Mon-
etDB/DataCell: Online Analytics in a Streaming Column-Store. In Proc.
of the Int’l. Conf. on Very Large Data Bases (VLDB).

Liarou, E. and Kersten, M. L. (2009). Datacell: Building a data stream engine
on top of a relational database kernel. In VLDB PhD Workshop.

Lim, H.-S., Lee, J.-G., Lee, M.-J., Whang, K.-Y., and Song, I.-Y. Continuous
Query Processing in Data Streams Using Duality of Data and Queries. In
ACM SIGMOD International Conference on Management of Data.

162 BIBLIOGRAPHY

Linear Road Benchmark (2012). http://pages.cs.brandeis.edu/ linearroad, .

Loo, B. T., Hellerstein, J. M., Huebsch, R., Shenker, S., and Stoica, I. (2004).
Enhancing P2P file-sharing with an internet-scale query processor. In Proc.
of the Int’l. Conf. on Very Large Data Bases (VLDB).

LSST (2010). Large Synoptic Survey Telescope. http://www.Isst.org.

Madden, S., Shah, M., and Hellerstein, J. M. (2002). Continuously Adaptive
Continuous Queries over Streams. In ACM SIGMOD International Confer-
ence on Management of Data.

MonetDB (2012). http://monetdb.org/.

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku,
G. S., Olston, C., Rosenstein, J., and Varma, R. (2003). Query Processing,
Approximation, and Resource Management in a Data Stream Management
System. In Proc. of the Int’l Conf. on Innovative Database Systems Research
(CIDR).

Napster (1999). http://www.napster.com. (last accessed on April 2011).

Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M.,
Palmér, M., and Risch, T. (2002). EDUTELLA: a P2P networking infras-
tructure based on RDF. In Proceedings of International Conference on World
Wide Web (WWW).

Olle, A. (1978). The CODASYL Approach to Data Base Management. John
Wiley and Sons, New York, USA, 1 edition.

Paton, N. W. and Diaz, O. (1999). Active Database Systems. ACM Comput.
Surv., 31:63-103.

Peterson, J. L. (1977). Petri Nets. ACM Comput. Surv., 9(3):223-252.

PostgreSQL (2012). http://www.postgresql.org/.

Qiming, C. and Meichun, H. (2010). Experience in Extending Query Engine for
Continuous Analytics. Technical Report TR-44, HP Laboratories.

Schreier, U. et al. (1991). Alert: An Architecture for Transforming a Passive
DBMS into an Active DBMS. In Proc. of the Int’l. Conf. on Very Large
Data Bases (VLDB).

Sellis, T., Lin, C., and Raschid, L. (1989). Data Intensive Production Systems:
the DIPS Approach. SIGMOD Record, 18(3):52-58.

SETI@home (1999). http://setiathome.berkeley.edu. (last accessed on April
2011).

Sharaf, M. A., Chrysanthis, P. K., Labrinidis, A., and Pruhs, K. (2008). Al-
gorithms and Metrics for Processing Multiple Heterogeneous Continuous
Queries. ACM Trans. Database Syst., 33(1):5:1-5:44.

Simon, B., Miklos, Z., Neijdl, W., Sintek, M., and Salvachua, J. (2003). Smart
Space for Learning: A Mediation Infrastructure for Learning Services. In

BIBLIOGRAPHY 163

Proceedings of International Conference on World Wide Web (WWW).

Stonebraker, M., Hanson, E., and Potamianos, S. (1988). The POSTGRES Rule
Manager. IEEFE Transactions on Software Engineering, 14:897-907.

Stonebraker, M., Hearst, M. A., and Potamianos, S. (1989). A Commentary on
the POSTGRES Rule System. SIGMOD Record, 18(3):5-11.

StreamBase Systems, Inc (2003). http://www.streambase.com.

StreamSQL (2009). http://blogs.streamsql.org/.

Tatbul, E. N. (2007). Load shedding techniques for data stream management
systems. PhD thesis, Providence, RI, USA. AAI3272068.

Widom, J. and Ceri, S., editors (1996). Active Database Systems: Triggers and
Rules For Advanced Database Processing. Morgan Kaufmann.

Winter, R. and Kostamaa, P. (2010). Large scale data warehousing: Trends and
observations. In Proc. of the Int’l. Conf. on Database Engineering (ICDE).

Zdonik, S. B., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazinska, M.,
and Balakrishnan, H. (2003). The Aurora and Medusa Projects. IEEE Data
Engineering Bulletin, 26(1):3-10.

Zhu, Y. and Shasha, D. (2002). Statstream: Statistical monitoring of thousands
of data streams in real time. In Proc. of the Int’l. Conf. on Very Large Data
Bases (VLDB).

Zloof, M. (1981). QBE/OBE: A Language for Office and Business Automation.
Computer, 14:13-22.

Zloof, M. M. (1975). Query by Example. In AFIPS National Computer Con-
ference.

Zloof, M. M. (1977). Query-by-Example: A Data Base Language. IBM Systems
Journal, 16(4):324-343.

164 BIBLIOGRAPHY

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Aurora System Architecture (Carney et al., 2002) 37
TelegraphCQ System Architecture (Chandrasekaran et al., 2003) 40
MonetDB Architecture 51
The DataCell model 58
MonetDB/DataCell Architecture 62
Petri-net Example o oo 65
Examples of alternative processing schemes 67
The Query Chain topology 74
Effect of inter-process communication 76
Effect of batch processing and strategies 76
Expressway Segment in LRB (Arasu et al., 2004) 80
Linear Road benchmark in DataCell 81
System load for each query collection (Q1-Q3) 83
System load for each query collection (Q4-Q7) 84
Data distribution during the benchmark 85
Average response time for Q7 86
Window-based stream processing 107
Incremental processing at the query plan level 114
Example of query plan transformations for range query 117
Example of query plan transformations for SUM function 118
Example of query plan transformations for AVG function 119
Example of query plan transformations for GROUP BY query. . 120
Example of query plan transformations for join query 121
Basic Performance 127
Varying Selectivity L oo 128

166 LIST OF FIGURES

5.10 Varying Window and Step Size 129
5.11 Decreasing Step (Incr. Number of Basic Windows) 131
5.12 Query Plan Adaptation, 132
5.13 Comparison with a Stream Engine 134
5.14 DataCell; break down costs 135

6.1 Query Morphing L o 150

Summary

Numerous applications nowadays require online analytics over high rate stream-
ing data. For example, emerging applications over mobile data can exploit the
big mobile data streams for advertising and traffic control. In addition, the
recent and continuously expanding massive cloud infrastructures require contin-
uous monitoring to remain in good state and prevent fraud attacks. Similarly,
scientific databases create data at massive rates daily or even hourly. In addi-
tion, web log analysis requires fast analysis of big streaming data for decision
support.

The need to handle queries that remain active for a long time (continuous
queries) and quickly analyze big data that are coming in a streaming mode
and combine it with existing data brings a new processing paradigm that can
not be exclusively handled by the existing database or data stream technology.
Database systems do not have support for continuous query processing, while
data stream systems are not built to scale for big data analysis. For this new
problem we need to combine the best of both worlds.

In this thesis, we study how to design and implant streaming functionalities
in modern column-stores which targets big data analytics. In particular, we
use the open source column-store, MonetDB, as our design and experimenta-
tion platform. This includes exploitation of both the storage/execution engine
and the optimizer infrastructure of the underlying DBMS. We investigate the
opportunities and challenges that arise with such a direction and we show that
it carries significant advantages. The major challenge then becomes the effi-
cient support for specialized stream features such as incremental window-based
processing as well as exploiting standard DBMS functionalities in a streaming
environment.

We demonstrate that the resulting system, MonetDB/DataCell, achieves ex-
cellent stream processing performance by gracefully handling the state of the
art stream benchmark, the Linear Road Benchmark. In addition, we demon-

167

168 SUMMARY

strate that MonetDB/DataCell outperforms state of the art commercial stream
management systems as the stream data increase. These results open the road
for scalable data processing that combines both persistent and streaming data
in an integrated environment in modern data warehouses.

Samenvatting

Vandaag de dag moeten online analytische programmas kunnen omgaan met
een snelle stroom van gegevens. Bijvoorbeeld, toepassingen in de mobiele sector
proberen de stroom van gegevens te gebruiken voor advertenties en routering. In
dezelfde lijn vereisen grootschalige Cloud infrastructuren een continue monitor-
ing om stabiliteit te waarborgen en cyberaanvallen te kunnen pareren. Weten-
schappelijk databanken en web-log analyses vereisen een efficiente verwerking
voor decision support.

Het athandelen van langlevende queries (continuous queries) en het snel anal-
yseren van grote data stromen in combinatie en vergelijking met reeds opges-
lagen informatie kan nog niet goed met de bestaande database en streaming
technologie worden uitgevoerd. Database systemen missen de functionaliteit
voor verwerking van continuous queries en data streaming systemen schalen
niet. Dit nieuwe probleem vereist een oplossing die de beste eigenschappen van
beide werelden combineert.

In dit proefschrift wordt een ontwerp besproken hoe data stromen kunnen
worden verwerkt in een modern kolom-georienteerde database systeem. In het
bijzonder richten we ons hier op het open-source systeem MonetDB als platform
voor ontwerp experimentatie. Het omvat aanpassingen in zowel het opslag deel,
de verwerkingskern, als ook de optimizers. De mogelijkheden worden op een
rij gezet en geanalyseerd om de beste richting te kunnen bepalen. De grootste
winst wordt gehaald bij 'window-based’ verwerking van de data stroom.

We laten aan de hand van de Linear Road Benchmark zien dat het proto-
type een uitstekende performance biedt en ook in vergelijking met state-of-the-
art commerciele systemen. Deze resultaten maken het mogelijk om schaalbare
gegevensverwerking te verkrijgen voor zowel stromende als persistente gegevens
in een geintegreerde, moderne datawarehouse omgeving.

169

170 SAMENVATTING

Acknowledgments

Here, T would like to take the opportunity to thank several people who have
been of great help towards the successful completion of this thesis.

First, I would like to express my gratitude to my supervisor, Prof. Martin
Kersten, for his guidance throughout my Ph.D. journey. Martin, is a very
inspiring person and scientist who taught me at multiple levels and not only in
the strict bounds of my thesis topic; the fact the he is still an active coder, gives
him a unrivaled insight of system challenges. I would also like to thank Stefan
Manegold, who became part of this effort about half way in my Ph.D journey.
Stefan’s ability for deep and careful analysis of every little detail showed me
how to study topics leaving no stone unturned. Stratos Idreos is another person
that was heavily involved in my thesis research and I am indebted to him for his
help. Stratos is always optimistic; he can easily detect good ideas, opportunities
and problems. Working with these three people, I earned a lot not only at the
context of this thesis but in the broad context of research.

In addition, I would like to thank all the members of the Database group at
CWI. Without the support of the core MonetDB team, this research would be
very hard to complete, if not impossible. In particular, I would like to note the
contribution of Niels Nes, who is always helpful, explaining and replying quickly
to any question I was bugging him with. Romulo Goncalves, my officemate for
the first couple of years, also contributed significantly to the construction of my
initial topic.

Manolis Koubarakis is my first advisor at the Technical University of Crete
for my undergraduate and my Master’s thesis; he is the person that encouraged
me the most to continue my Ph.D. studies. Already during my Master’s studies,
Manolis spent valuable resources to teach me how to construct and defend my
first publishable work. Our collaboration and academic relation still continues
and I am thankful that he also accepted to become a member of my Ph.D.
committee.

171

172 ACKNOWLEDGMENTS

During my Ph.D time, I spent four great months doing a research internship
in the Stream Group of IBM Research, in Watson, New York. For this highly
constructive and educative experience, I would like to thank Anton Riabov,
Anand Ranganathan and Octavian Udrea.

Also, I would like to thank all these inspiring people I have met during inter-
national database conferences. Many members of the Greek database “mafia”
provided an invaluable network and huge motivation.

I would also like to thank Tamer Ozsu, Manolis Koubarakis, Lynda Hardman
and Martine de Rijke for agreeing to be part of my PhD committee.

Finally, I am grateful to my family for their continuous support and sacrifices
throughout my education path.

CURRICULUM VITAE

Education

10/2006 - now

9/2004 - 9/2006

9/1997 - 6/2003

PhD candidate
CWI Database group, Amsterdam, The Netherlands
Supervised by Martin Kersten

Master in Computer Engineering, 9.67/10

Department of Electronic and Computer Engineering
Technical University of Crete, Greece

Thesis: Distributed Evaluation of Conjunctive RDF Queries
over Distributed Hash Tables, 10/10

Supervised by Manolis Koubarakis

Committee: Vasilis Samoladas and Euripides Petrakis

Diploma in Electronic and Computer Engineering, 7.78/10
Department of Electronic and Computer Engineering
Technical University of Crete, Greece

Thesis: A Hybrid Peer-to-peer System with a Schema based
Routing Strategy, 10/10

Supervised by Manolis Koubarakis

Committee: Stavros Christodoulakis and Vasilis Samoladas

173

174 CURRICULUM VITAE

Employment & Academic Experience

10/2006 - 09/2012 Junior researcher
Database group
CWI
Amsterdam, The Netherlands

7/2010 - 11/2010 Research intern
IBM T. J. Watson Research Center

Automated Component Assembly Middleware, Stream Group
New York, USA

09/2004 - 09/2006 Research assistant
in projects EVERGROW and ONTOGRID
(EU 6th Framework Programme IST/FET)

9/2003 - 9/2006 Research assistant
Intelligent Systems Laboratory
Technical University of Crete, Greece

9/2005 - 2/2006 Teaching assistant
Theory of Computation (Autumn 2005)
Technical University of Crete, Greece

Publications

Refereed Conference Papers

(1) Stratos Idreos and Erietta Liarou. dbTouch: Analytics at your Fingertips.
In Proceedings of the 7th International Conference on Innovative Data
Systems Research (CIDR), Asilomar, California, USA, 2013.

(2) Erietta Liarou and Stratos Idreos. Too Many Links in the Horizon; What
is Next? Linked Views and Linked History. In Proceedings of the 10th
International Semantic Web Conference (ISWC), Outrageous Ideas track,
Bonn, Germany, October 2011.

(3) Martin Kersten, Stefan Manegold, Stratos Idreos and Erietta Liarou. The
Researcher’s Guide to the Data Deluge: Querying a Scientific Database in

CURRICULUM VITAE 175

Just a Few Seconds. In Proceedings of the Very Large Databases Endow-
ment (PVLDB) and in the 37th VLDB Conference, Seattle, WA, August
2011. Challenges and Visions best paper award.

Erietta Liarou, Romulo Goncalves and Stratos Idreos. Exploiting the
Power of Relational Databases for Efficient Stream Processing. In Pro-
ceedings of the 19th International Conference on Extending Database
Technology (EDBT), Saint-Petersburg, Russia March 2009

Stratos Idreos, Erietta Liarou and Manolis Koubarakis. Continuous Multi-
Way Joins over Distributed Hash Tables. In Proceedings of the 11th
International Conference on Extending Database Technology (EDBT),
Nantes, France, March 2008

Erietta Liarou, Stratos Idreos and Manolis Koubarakis. Continuous RDF
Query Processing over DHTs. In Proceedings of the 6th International
Semantic Web Conference (ISWC), Busan, Korea, November 2007

Erietta Liarou, Stratos Idreos and Manolis Koubarakis. Evaluating Con-
junctive Triple Pattern Queries over Large Structured Overlay Networks.
In Proceedings of the 5th International Semantic Web Conference (ISWC),
Athens, Georgia USA, November 2006

Refereed Demo Papers

(1)

Erietta Liarou, Stratos Idreos, Stefan Manegold, Martin Kersten. Mon-
etDB/DataCell: Ounline Analytics in a Streaming Column-Store In Pro-
ceedings of the 38th International Conference on Very Large Data Bases
(PVLDB), Istanbul, Turkey, August 2012

Refereed Workshop Papers

(1)

Erietta Liarou and Martin Kersten. DataCell: Building a Data Stream
Engine on top of a Relational Database Kernel. In Proceedings of the
35th International Conference on Very Large Data Bases (VLDB), PhD
workshop, Lyon, France, August 2009

Martin Kersten, Erietta Liarou and Romulo Goncalves. A Query Lan-
guage for a Data Refinery Cell. In Proceedings of the 2nd International
workshop on Event-Driven Architecture, Processing and Systems (EDA-
PS), in conjunction with VLDB, Vienna, Austria, September 2007

176

3)

CURRICULUM VITAE

Erietta Liarou, Stratos Idreos and Manolis Koubarakis. Publish/Subscribe
with RDF Data over Large Structured Overlay Networks. In Proceedings
of the 3rd International Workshop on Databases, Information Systems
and Peer- to-Peer Computing (DBISP2P) in conjunction with VLDB,
Trondheim, Norway, August 2005

Book Chapters

(1)

Zoi Kaoudi, Iris Miliaraki, Matoula Magiridou, Erietta Liarou, Stratos
Idreos and Manolis Koubarakis. Semantic Grid Resource Discovery using
DHTs in Atlas. In “Knowledge and Data Management in Grids”, Talia
Domenico, Bilas Angelos, and Dikaiakos Marios D.(editors), Springer,
2006.

National Events

(1)

Participated with the EDBT 2009 paper “Exploiting the Power of Rela-
tional Databases for Efficient Stream Processing” in the 8th Hellenic Data
Management Symposium, Athens, Greece, July 2009

Participated with the ISWC 2006 paper “Evaluating Conjunctive Triple
Pattern Queries over Large Structured Overlay Networks” in the 6th Hel-
lenic Data Management Symposium, Athens, Greece, July 2007

Participated with the paper “DataCell: A column oriented data stream
engine” in the Dutch-Belgian Database Day, Brussels, Belgium, November
2007

Ongoing Research

The following two topics is ongoing research in the context of DataCell, an archi-
tecture that extends a column-store DBMS kernel to provide stream processing.

(1)

Incremental Processing in a Column-store.

In this work we investigate how to efficiently support core streaming func-
tionalities such as incremental stream processing and window-based pro-
cessing within a column-store database architecture for handling large
volumes of streaming data.

CURRICULUM VITAE 177

(2) Indexing in a Streaming Column-Store.
In this work we investigate indexing and multi-query processing opportu-
nities for large volume data streams in column-stores.

Honors and Awards

(1) VLDB Best Paper Award in Challenges and Visions
In 37th International Conference on Very Large Databases (VLDB), Seat-
tle, USA, September 2011.
By the Computing Community Consortium, USA, 2011

(2) SIGMOD 2012 Travel Award
By NSF, SAP and the SIGMOD Executive Committee, 2012

Reviewing

Reviewer

External Reviewer

TKDE
Ad Hoc Networks

VLDB 2008, 2009, 2010
ICDE 2009, 2010
EDBT 2008

DEBS 2008

SSDBM 2008

WISE 2012

178 CURRICULUM VITAE

SIKS Dissertation Series

1998-1 Johan van den Akker (CWI) DEGAS -
An Active, Temporal Database of Autonomous
Objects

1998-2 Floris Wiesman (UM) Information
Retrieval by Graphically Browsing Meta-
Information

1998-3 Ans Steuten (TUD) A Contribution to
the Linguistic Analysis of Business Conversa-
tions within the Language/Action Perspective
1998-4 Dennis Breuker (UM) Memory versus
Search in Games

1998-5 E.W.Oskamp (RUL) Computeronderste-
uning bij Straftoemeting

1999-1 Mark Sloof (VU) Physiology of Qual-
ity Change Modelling; Automated modelling of
Quality Change of Agricultural Products
1999-2 Rob Potharst (EUR) Classification using
decision trees and neural nets

1999-3 Don Beal (UM) The Nature of Minimax
Search

1999-4 Jacques Penders (UM) The practical Art
of Moving Physical Objects

1999-5 Aldo de Moor (KUB) Empowering Com-
munities: A Method for the Legitimate User-
Driven Specification of Network Information
Systems

1999-6 Niek J.E. Wijngaards (VU) Re-design of
compositional systems

1999-7 David Spelt (UT) Verification support
for object database design

1999-8 Jacques H.J. Lenting (UM) Informed
Gambling: Conception and Analysis of a Multi-
Agent Mechanism for Discrete Reallocation.
2000-1 Frank Niessink (VU) Perspectives on Im-
proving Software Maintenance

2000-2 Koen Holtman (TUE) Prototyping of
CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA) Sociaal-
organisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief.

2000-4 Geert de Haan (VU) ETAG, A Formal
Model of Competence Knowledge for User Inter-
face Design

2000-5 Ruud van der Pol (UM) Knowledge-
based Query Formulation in Information Re-
trieval

2000-6 Rogier van Eijk (UU) Programming Lan-
guages for Agent Communication

2000-7 Niels Peek (UU) Decision-theoretic
Planning of Clinical Patient Management

2000-8 Veerle Coup (EUR) Sensitivity Analyis
of Decision-Theoretic Networks

2000-9 Florian Waas (CWI) Principles of Prob-
abilistic Query Optimization

2000-10 Niels Nes (CWI) Image Database Man-
agement System Design Considerations, Algo-
rithms and Architecture

2000-11 Jonas Karlsson (CWI) Scalable Dis-

tributed Data Structures for Database Manage-
ment

2001-1 Silja Renooij (UU) Qualitative Ap-
proaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU) Agent Program-
ming Languages: Programming with Mental
Models

2001-3 Maarten van Someren (UvA) Learning
as problem solving

2001-4 Evgueni Smirnov (UM) Conjunctive and
Disjunctive Version Spaces with Instance-Based
Boundary Sets

179

180

2001-5 Jacco van Ossenbruggen (VU) Process-
ing Structured Hypermedia: A Matter of Style
2001-6 Martijn van Welie (VU) Task-based User
Interface Design

2001-7 Bastiaan Schonhage (VU) Diva: Archi-
tectural Perspectives on Information Visualiza-
tion

2001-8 Pascal van Eck (VU) A Compositional
Semantic Structure for Multi-Agent Systems Dy-
namics.

2001-9 Pieter Jan 't Hoen (RUL) Towards Dis-
tributed Development of Large Object-Oriented
Models, Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA) Modeling and
Simulating Work Practice BRAHMS: a multia-
gent modeling and simulation language for work
practice analysis and design

2001-11 Tom M. van Engers (VUA) Knowledge
Management: The Role of Mental Models in
Business Systems Design

2002-01 Nico Lassing (VU) Architecture-Level
Modifiability Analysis

2002-02 Roelof van Zwol (UT) Modelling and
searching web-based document collections
2002-03 Henk Ernst Blok (UT) Database Opti-
mization Aspects for Information Retrieval
2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in
Data Mining

2002-05 Radu Serban (VU) The Private Cy-
berspace Modeling Electronic Environments in-
habited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL) Applied legal
epistemology; Building a knowledge-based ontol-
ogy of the legal domain

2002-07 Peter Boncz (CWI) Monet: A Next-
Generation DBMS Kernel For Query-Intensive
Applications

2002-08 Jaap Gordijn (VU) Value Based Re-
quirements Engineering: Exploring Innovative
E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB) In-
tegrating Modern Business Applications with
Objectified Legacy Systems

2002-10 Brian Sheppard (UM) Towards Perfect
Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU) Agent
Based Modelling of Dynamics: Biological and
Organisational Applications

2002-12 Albrecht Schmidt (Uva) Processing
XML in Database Systems

SIKS DISSERTATION SERIES

2002-13 Hongjing Wu (TUE) A Reference Ar-
chitecture for Adaptive Hypermedia Applica-
tions

2002-14 Wieke de Vries (UU) Agent Interac-
tion: Abstract Approaches to Modelling, Pro-
gramming and Verifying Multi-Agent Systems
2002-15 Rik Eshuis (UT) Semantics and Verifi-
cation of UML Activity Diagrams for Workflow
Modelling

2002-16 Pieter van Langen (VU) The Anatomy
of Design: Foundations, Models and Applica-
tions

2002-17 Stefan Manegold (UVA) Understand-

ing, Modeling, and Improving Main-Memory
Database Performance
2003-01 Heiner Stuckenschmidt (VU)

Ontology-Based Information Sharing in Weakly
Structured Environments

2003-02 Jan Broersen (VU) Modal Action Log-
ics for Reasoning About Reactive Systems
2003-03 Martijn Schuemie (TUD) Human-
Computer Interaction and Presence in Virtual
Reality Exposure Therapy

2003-04 Milan Petkovic (UT) Content-Based
Video Retrieval Supported by Database Technol-
ogy

2003-05 Jos Lehmann (UVA) Causation in Ar-
tificial Intelligence and Law - A modelling ap-
proach

2003-06 Boris van Schooten (UT) Development
and specification of virtual environments

2003-07 Machiel Jansen (UvA) Formal Explo-
rations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM) Repair Based
Scheduling

2003-09 Rens Kortmann (UM) The resolution
of visually guided behaviour

2003-10 Andreas Lincke (UvT) Electronic Busi-
ness Negotiation: Some experimental studies on
the interaction between medium, innovation con-
text and culture

2003-11 Simon Keizer (UT) Reasoning under
Uncertainty in Natural Language Dialogue using
Bayesian Networks

2003-12 Roeland Ordelman (UT) Dutch speech
recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM) Nosce Hostem -
Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN) Freezing
Language: Conceptualisation Processes across
ICT-Supported Organisations

SIKS DISSERTATION SERIES

2003-15 Mathijs de Weerdt (TUD) Plan Merg-
ing in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI) Feature
Grammar Systems - Incremental Maintenance of
Indexes to Digital Media Warehouses

2003-17 David Jansen (UT) Extensions of Stat-
echarts with Probability, Time, and Stochastic
Timing

2003-18 Levente Kocsis (UM) Learning Search
Decisions

2004-01 Virginia Dignum (UU) A Model for
Organizational Interaction: Based on Agents,
Founded in Logic

2004-02 Lai Xu (UvT) Monitoring Multi-party
Contracts for E-business

2004-03 Perry Groot (VU) A Theoretical and
Empirical Analysis of Approximation in Sym-
bolic Problem Solving

2004-04 Chris van Aart (UVA) Organizational
Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR) Knowledge dis-
covery and monotonicity

2004-06 Bart-Jan Hommes (TUD) The Evalua-
tion of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM) Voorbeeldig onder-
wijs; voorbeeldgestuurd onderwijs, een opstap
naar abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM) Politie en de
Nieuwe Internationale Informatiemarkt, Gren-
sregionale politile gegevensuitwisseling en digi-
tale expertise

2004-09 Martin Caminada (VU) For the Sake of
the Argument; explorations into argument-based
reasoning

2004-10 Suzanne Kabel (UVA) Knowledge-rich
indexing of learning-objects

2004-11 Michel Klein (VU) Change Manage-
ment for Distributed Ontologies

2004-12 The Duy Bui (UT) Creating emotions
and facial expressions for embodied agents
2004-13 Wojciech Jamroga (UT) Using Multi-
ple Models of Reality: On Agents who Know how
to Play

2004-14 Paul Harrenstein (UU) Logic in Con-
flict. Logical Explorations in Strategic Equilib-
rium

2004-15 Arno Knobbe (UU) Multi-Relational
Data Mining

2004-16 Federico Divina (VU) Hybrid Genetic
Relational Search for Inductive Learning

181

2004-17 Mark Winands (UM) Informed Search
in Complex Games

2004-18 Vania Bessa Machado (UvA) Support-
ing the Construction of Qualitative Knowledge
Models

2004-19 Thijs Westerveld (UT) Using genera-
tive probabilistic models for multimedia retrieval

2004-20 Madelon Evers (Nyenrode) Learning
from Design: facilitating multidisciplinary de-
sign teams

2005-01 Floor Verdenius (UVA) Methodological
Aspects of Designing Induction-Based Applica-
tions

2005-02 Erik van der Werf (UM)) AI techniques
for the game of Go

2005-03 Franc Grootjen (RUN) A Pragmatic
Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT) Towards
Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA) Two-
Level Probabilistic Grammars for Natural Lan-
guage Parsing

2005-06 Pieter Spronck (UM) Adaptive Game
Al

2005-07 Flavius Frasincar (TUE) Hypermedia
Presentation Generation for Semantic Web In-
formation Systems

2005-08 Richard Vdovjak (TUE) A Model-
driven Approach for Building Distributed
Ontology-based Web Applications

2005-09 Jeen Broekstra (VU) Storage, Query-
ing and Inferencing for Semantic Web Languages

2005-10 Anders Bouwer (UVA) Explaining Be-
haviour: Using Qualitative Simulation in Inter-
active Learning Environments

2005-11 Elth Ogston (VU) Agent Based Match-

making and Clustering - A Decentralized Ap-
proach to Search

2005-12 Csaba Boer (EUR) Distributed Simu-
lation in Industry

2005-13 Fred Hamburg (UL) Een Com-
putermodel voor het Ondersteunen van Eu-
thanasiebeslissingen

2005-14 Borys Omelayenko (VU) Web-Service
configuration on the Semantic Web; Exploring
how semantics meets pragmatics

2005-15 Tibor Bosse (VU) Analysis of the Dy-
namics of Cognitive Processes

2005-16 Joris Graaumans (UU) Usability of
XML Query Languages

182

2005-17 Boris Shishkov (TUD) Software Spec-
ification Based on Re-usable Business Compo-
nents

2005-18 Danielle Sent (UU) Test-selection
strategies for probabilistic networks

2005-19 Michel van Dartel (UM) Situated Rep-
resentation

2005-20 Cristina Coteanu (UL) Cyber Con-
sumer Law, State of the Art and Perspectives
2005-21 Wijnand Derks (UT) Improving Con-
currency and Recovery in Database Systems by
Exploiting Application Semantics

2006-01 Samuil Angelov (TUE) Foundations of
B2B Electronic Contracting

2006-02 Cristina Chisalita (VU) Contextual is-
sues in the design and use of information tech-
nology in organizations

2006-03 Noor Christoph (UVA) The role of
metacognitive skills in learning to solve problems
2006-04 Marta Sabou (VU) Building Web Ser-
vice Ontologies

2006-05 Cees Pierik (UU) Validation Tech-
niques for Object-Oriented Proof Outlines

2006-06 Ziv Baida (VU) Software-aided Ser-
vice Bundling - Intelligent Methods & Tools for
Graphical Service Modeling

2006-07 Marko Smiljanic (UT) XML schema
matching — balancing efficiency and effectiveness
by means of clustering

2006-08 Eelco Herder (UT) Forward, Back and

Home Again - Analyzing User Behavior on the
Web

2006-09 Mohamed Wahdan (UM) Automatic
Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU) Semantic Routing
in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT) Flattening
Queries over Nested Data Types

2006-12 Bert Bongers (VU) Interactivation -
Towards an e-cology of people, our technologi-
cal environment, and the arts

2006-13 Henk-Jan Lebbink (UU) Dialogue and
Decision Games for Information Exchanging
Agents

2006-14 Johan Hoorn (VU) Software Require-
ments: Update, Upgrade, Redesign - towards a
Theory of Requirements Change

2006-15 Rainer Malik (UU) CONAN: Text Min-
ing in the Biomedical Domain

SIKS DISSERTATION SERIES

2006-16 Carsten Riggelsen (UU) Approxima-
tion Methods for Efficient Learning of Bayesian
Networks

2006-17 Stacey Nagata (UU) User Assistance
for Multitasking with Interruptions on a Mobile
Device

2006-18 Valentin Zhizhkun (UVA) Graph trans-
formation for Natural Language Processing
2006-19 Birna van Riemsdijk (UU) Cognitive
Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)
models for prediction in data mining

2006-21 Bas van Gils (RUN) Aptness on the
Web

2006-22 Paul de Vrieze (RUN) Fundaments of
Adaptive Personalisation

2006-23 Ion Juvina (UU) Development of Cog-
nitive Model for Navigating on the Web
2006-24 Laura Hollink (VU) Semantic Annota-
tion for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU) Conditional
log-likelihood MDL and Evolutionary MCMC
2006-26 Vojkan Mihajlovic (UT) Score Region
Algebra: A Flexible Framework for Structured
Information Retrieval

2006-27 Stefano Bocconi (CWI) Vox Populi:
generating video documentaries from semanti-
cally annotated media repositories

2006-28 Borkur Sigurbjornsson (UVA) Focused
Information Access using XML Element Re-
trieval

2007-01 Kees Leune (UvT) Access Control and
Service-Oriented Architectures

2007-02 Wouter Teepe (RUG) Reconciling In-
formation Exchange and Confidentiality: A For-
mal Approach

2007-03 Peter Mika (VU) Social Networks and
the Semantic Web

2007-04 Jurriaan van Diggelen (UU) Achieving
Semantic Interoperability in Multi-agent Sys-
tems: a dialogue-based approach

2007-05 Bart Schermer (UL) Software Agents,
Surveillance, and the Right to Privacy: a Leg-
islative Framework for Agent-enabled Surveil-
lance

2007-06 Gilad Mishne (UVA) Applied Text An-
alytics for Blogs

2007-07 Natasa Jovanovic’ (UT) To Whom It
May Concern - Addressee Identification in Face-
to-Face Meetings

Monotone

SIKS DISSERTATION SERIES

2007-08 Mark Hoogendoorn (VU) Modeling of
Change in Multi-Agent Organizations

2007-09 David Mobach (VU) Agent-Based Me-
diated Service Negotiation

2007-10 Huib Aldewereld (UU) Autonomy vs.
Conformity: an Institutional Perspective on
Norms and Protocols

2007-11 Natalia Stash (TUE) Incorporating
Cognitive/Learning Styles in a General-Purpose
Adaptive Hypermedia System

2007-12 Marcel van Gerven (RUN) Bayesian
Networks for Clinical Decision Support: A Ra-
tional Approach to Dynamic Decision-Making
under Uncertainty

2007-13 Rutger Rienks (UT) Meetings in Smart
Environments; Implications of Progressing Tech-
nology

2007-14 Niek Bergboer (UM) Context-Based
Image Analysis

2007-15 Joyca Lacroix (UM) NIM: a Situated
Computational Memory Model

2007-16 Davide Grossi (UU) Designing Invisible
Handcuffs. Formal investigations in Institutions
and Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU) Reasoning
with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT) On the develop-
ment an management of adaptive business col-
laborations

2007-19 David Levy (UM) Intimate relation-
ships with artificial partners

2007-20 Slinger Jansen (UU) Customer Config-
uration Updating in a Software Supply Network
2007-21 Karianne Vermaas (UU) Fast diffusion
and broadening use: A research on residential

adoption and usage of broadband internet in the
Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT) Goal-oriented de-
sign of value and process models from patterns

2007-23 Peter Barna (TUE) Specification of
Application Logic in Web Information Systems

2007-24 Georgina Ramrez Camps (CWI) Struc-
tural Features in XML Retrieval

2007-25 Joost Schalken (VU) Empirical Inves-
tigations in Software Process Improvement

2008-01 Katalin Boer-Sorbn (EUR) Agent-
Based Simulation of Financial Markets: A mod-
ular, continuous-time approach

2008-02 Alexei Sharpanskykh (VU) On
Computer-Aided Methods for Modeling and

183

Analysis of Organizations
2008-03 Vera Hollink (UVA) Optimizing hierar-
chical menus: a usage-based approach

2008-04 Ander de Keijzer (UT) Management of
Uncertain Data - towards unattended integra-
tion

2008-05 Bela Mutschler (UT) Modeling and
simulating causal dependencies on process-aware
information systems from a cost perspective
2008-06 Arjen Hommersom (RUN) On the Ap-
plication of Formal Methods to Clinical Guide-
lines, an Artificial Intelligence Perspective

2008-07 Peter van Rosmalen (OU) Supporting
the tutor in the design and support of adaptive
e-learning

2008-08 Janneke Bolt (UU) Bayesian Networks:
Aspects of Approximate Inference

2008-09 Christof van Nimwegen (UU) The para-
dox of the guided user: assistance can be
counter-effective

2008-10 Wauter Bosma (UT) Discourse ori-
ented summarization

2008-11 Vera Kartseva (VU) Designing Con-
trols for Network Organizations: A Value-Based
Approach
2008-12 Jozsef Farkas (RUN) A Semiotically
Oriented Cognitive Model of Knowledge Repre-
sentation

2008-13 Caterina Carraciolo (UVA) Topic
Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT) Context-
Aware Querying; Better Answers with Less Ef-
fort

2008-15 Martijn van Otterlo (UT) The Logic of
Adaptive Behavior: Knowledge Representation
and Algorithms for the Markov Decision Process
Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU) Embodied
agents from a user’s perspective

2008-17 Martin Op 't Land (TUD) Applying
Architecture and Ontology to the Splitting and
Allying of Enterprises

2008-18 Guido de Croon (UM) Adaptive Active
Vision

2008-19 Henning Rode (UT) From Document to

Entity Retrieval: Improving Precision and Per-
formance of Focused Text Search

2008-20 Rex Arendsen (UVA) Geen bericht,
goed bericht. Een onderzoek naar de effecten van
de introductie van elektronisch berichtenverkeer

184

met de overheid op de administratieve lasten van
bedrijven.

2008-21 Krisztian Balog (UVA) People Search
in the Enterprise

2008-22 Henk Koning (UU) Communication of
IT-Architecture

2008-23 Stefan Visscher (UU) Bayesian net-
work models for the management of ventilator-
associated pneumonia

2008-24 Zharko Aleksovski (VU) Using back-
ground knowledge in ontology matching
2008-25 Geert Jonker (UU) Efficient and Equi-
table Exchange in Air Traffic Management Plan
Repair using Spender-signed Currency

2008-26 Marijn Huijbregts (UT) Segmentation,
Diarization and Speech Transcription: Surprise
Data Unraveled

2008-27 Hubert Vogten (OU) Design and Imple-
mentation Strategies for IMS Learning Design
2008-28 Ildiko Flesch (RUN) On the Use of In-
dependence Relations in Bayesian Networks

2008-29 Dennis Reidsma (UT) Annotations and
Subjective Machines - Of Annotators, Embodied
Agents, Users, and Other Humans

2008-30 Wouter van Atteveldt (VU) Semantic
Network Analysis: Techniques for Extracting,
Representing and Querying Media Content

2008-31 Loes Braun (UM) Pro-Active Medical
Information Retrieval

2008-32 Trung H. Bui (UT) Toward Affective
Dialogue Management using Partially Observ-
able Markov Decision Processes

2008-33 Frank Terpstra (UVA) Scientific Work-
flow Design; theoretical and practical issues

2008-34 Jeroen de Knijf (UU) Studies in Fre-
quent Tree Mining

2008-35 Ben Torben Nielsen (UvT) Dendritic
morphologies: function shapes structure

2009-01 Rasa Jurgelenaite (RUN) Symmetric
Causal Independence Models

2009-02 Willem Robert van Hage (VU) Evalu-
ating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT) A Framework for
Evidence-based Policy Making Using IT
2009-04 Josephine Nabukenya (RUN) Improv-
ing the Quality of Organisational Policy Making
using Collaboration Engineering

2009-05 Sietse Overbeek (RUN) Bridging Sup-
ply and Demand for Knowledge Intensive Tasks
- Based on Knowledge, Cognition, and Quality

SIKS DISSERTATION SERIES

2009-06 Muhammad Subianto (UU) Under-
standing Classification

2009-07 Ronald Poppe (UT) Discriminative
Vision-Based Recovery and Recognition of Hu-
man Motion

2009-08 Volker Nannen (VU) Evolutionary
Agent-Based Policy Analysis in Dynamic Envi-
ronments

2009-09 Benjamin Kanagwa (RUN) Design,
Discovery and Construction of Service-oriented
Systems

2009-10 Jan Wielemaker (UVA) Logic program-
ming for knowledge-intensive interactive appli-
cations

2009-11 Alexander Boer (UVA) Legal Theory,
Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-
Universitaet zu Berlin) Operating Guidelines for
Services

2009-13 Steven de Jong (UM) Fairness in Multi-
Agent Systems

2009-14 Maksym Korotkiy (VU) From
ontology-enabled services to service-enabled on-
tologies (making ontologies work in e-science
with ONTO-SOA)

2009-15 Rinke Hoekstra (UVA) Ontology Rep-
resentation - Design Patterns and Ontologies
that Make Sense

2009-16 Fritz Reul (UvT) New Architectures in
Computer Chess

2009-17 Laurens van der Maaten (UvT) Feature
Extraction from Visual Data

2009-18 Fabian Groffen (CWI) Armada, An
Evolving Database System

2009-19 Valentin Robu (CWI) Modeling Pref-
erences, Strategic Reasoning and Collaboration
in Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU) Adjustable
Autonomy: Controling Influences on Decision
Making

2009-21 Stijn Vanderlooy (UM) Ranking and
Reliable Classification

2009-22 Pavel Serdyukov (UT) Search For Ex-
pertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU) Modelling Web
Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VUA) Cognitive
Models for Training Simulations

2009-25 Alex van Ballegooij (CWI) ”RAM: Ar-
ray Database Management through Relational

SIKS DISSERTATION SERIES

Mapping”

2009-26 Fernando Koch (UU) An Agent-Based
Model for the Development of Intelligent Mobile
Services

2009-27 Christian Glahn (OU) Contextual Sup-
port of social Engagement and Reflection on the
Web

2009-28 Sander Evers (UT) Sensor Data Man-
agement with Probabilistic Models

2009-29 Stanislav Pokraev (UT) Model-Driven

Semantic Integration of Service-Oriented Appli-
cations

2009-30 Marcin Zukowski (CWI) Balancing
vectorized query execution with bandwidth-
optimized storage

2009-31 Sofiya Katrenko (UVA) A Closer Look
at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco de
Boer (VU) Architectural Knowledge Manage-
ment: Supporting Architects and Auditors

2009-33 Khiet Truong (UT) How Does Real Af-
fect Affect Affect Recognition In Speech?

2009-34 Inge van de Weerd (UU) Advancing in
Software Product Management: An Incremental
Method Engineering Approach

2009-35 Wouter Koelewijn (UL) Privacy en

Politiegegevens; Over geautomatiseerde nor-
matieve informatie-uitwisseling

2009-36 Marco Kalz (OUN) Placement Support
for Learners in Learning Networks

2009-37 Hendrik Drachsler (OUN) Navigation
Support for Learners in Informal Learning Net-
works

2009-38 Riina Vuorikari (OU) Tags and self-
organisation: a metadata ecology for learning
resources in a multilingual context

2009-39 Christian Stahl (TUE, Humboldt-
Universitaet zu Berlin) Service Substitution — A
Behavioral Approach Based on Petri Nets
2009-40 Stephan Raaijmakers (UvT) Multino-
mial Language Learning: Investigations into the
Geometry of Language

2009-41 Igor Berezhnyy (UvT) Digital Analysis
of Paintings

2009-42 Toine Bogers (UvT) Recommender
Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in Computer Net-
works using Heuristic Search and Mobile Am-
bients

185

2009-44 Roberto Santana Tapia (UT) Assessing
Business-IT Alignment in Networked Organiza-
tions

2009-45 Jilles Vreeken (UU) Making Pattern
Mining Useful

2009-46 Loredana Afanasiev (UvA) Querying
XML: Benchmarks and Recursion

2010-01 Matthijs van Leeuwen (UU) Patterns
that Matter

2010-02 Ingo Wassink (UT) Work flows in Life
Science

2010-03 Joost Geurts (CWI) A Document En-
gineering Model and Processing Framework for
Multimedia documents

2010-04 Olga Kulyk (UT) Do You Know What
I Know? Situational Awareness of Co-located
Teams in Multidisplay Environments

2010-05 Claudia Hauff (UT) Predicting the Ef-
fectiveness of Queries and Retrieval Systems

2010-06 Sander Bakkes (UvT) Rapid Adapta-
tion of Video Game Al

2010-07 Wim Fikkert (UT) A Gesture interac-
tion at a Distance

2010-08 Krzysztof Siewicz (UL) Towards an Im-
proved Regulatory Framework of Free Software.
Protecting user freedoms in a world of software
communities and eGovernments

2010-09 Hugo Kielman (UL) A Politiele
gegevensverwerking en Privacy, Naar een effec-
tieve waarborging

2010-10 Rebecca Ong (UL) Mobile Communi-
cation and Protection of Children

2010-11 Adriaan Ter Mors (TUD) The world
according to MARP: Multi-Agent Route Plan-
ning

2010-12 Susan van den Braak (UU) Sensemak-
ing software for crime analysis

2010-13 Gianluigi Folino (RUN) High Perfor-
mance Data Mining using Bio-inspired tech-
niques

2010-14 Sander van Splunter (VU) Automated
Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT) Managing

Dependency Relations in Inter-Organizational
Models

2010-16 Sicco Verwer (TUD) Efficient Identifi-
cation of Timed Automata, theory and practice

2010-17 Spyros Kotoulas (VU) Scalable Discov-
ery of Networked Resources: Algorithms, Infras-
tructure, Applications

186

2010-18 Charlotte Gerritsen (VU) Caught in
the Act: Investigating Crime by Agent-Based
Simulation

2010-19 Henriette Cramer (UvA) People’s Re-
sponses to Autonomous and Adaptive Systems

2010-20 Ivo Swartjes (UT) Whose Story Is It
Anyway? How Improv Informs Agency and Au-
thorship of Emergent Narrative

2010-21 Harold van Heerde (UT) Privacy-aware
data management by means of data degradation

2010-22 Michiel Hildebrand (CWI) End-user
Support for Access to

Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU) The Logical
Structure of Emotions

2010-24 Dmytro Tykhonov Designing Generic
and Efficient Negotiation Strategies

2010-25 Zulfigar Ali Memon (VU) Modelling
Human-Awareness for Ambient Agents: A Hu-
man Mindreading Perspective

2010-26 Ying Zhang (CWI) XRPC: Efficient
Distributed Query Processing on Heterogeneous
XQuery Engines

2010-27 Marten Voulon (UL) Automatisch con-
tracteren

2010-28 Arne Koopman (UU) Characteristic
Relational Patterns

2010-29 Stratos Idreos (CWI) Database Crack-
ing: Towards Auto-tuning Database Kernels

2010-30 Marieke van Erp (UvT) Accessing Nat-
ural History - Discoveries in data cleaning, struc-
turing, and retrieval

2010-31 Victor de Boer (UVA) Ontology En-
richment from Heterogeneous Sources on the
Web

2010-32 Marcel Hiel (UvT) An Adaptive Ser-
vice Oriented Architecture: Automatically solv-
ing Interoperability Problems

2010-33 Robin Aly (UT) Modeling Representa-
tion Uncertainty in Concept-Based Multimedia
Retrieval

2010-34 Teduh Dirgahayu (UT) Interaction De-
sign in Service Compositions

2010-35 Dolf Trieschnigg (UT) Proof of Con-
cept: Concept-based Biomedical Information
Retrieval

2010-36 Jose Janssen (OU) Paving the Way for
Lifelong Learning; Facilitating competence de-
velopment through a learning path specification

SIKS DISSERTATION SERIES

2010-37 Niels Lohmann (TUE) Correctness of
services and their composition

2010-38 Dirk Fahland (TUE) From Scenarios to
components

2010-39 Ghazanfar Farooq Siddiqui (VU) Inte-
grative modeling of emotions in virtual agents
2010-40 Mark van Assem (VU) Converting and
Integrating Vocabularies for the Semantic Web
2010-41 Guillaume Chaslot (UM) Monte-Carlo
Tree Search

2010-42 Sybren de Kinderen (VU) Needs-driven

service bundling in a multi-supplier setting - the
computational e3-service approach

2010-43 Peter van Kranenburg (UU) A Compu-
tational Approach to Content-Based Retrieval of
Folk Song Melodies

2010-44 Pieter Bellekens (TUE) An Approach
towards Context-sensitive and User-adapted Ac-
cess to Heterogeneous Data Sources, Illustrated
in the Television Domain

2010-45 Vasilios Andrikopoulos (UvT) A theory
and model for the evolution of software services

2010-46 Vincent Pijpers (VU) e3alignment:
Exploring Inter-Organizational Business-ICT
Alignment

2010-47 Chen Li (UT) Mining Process Model
Variants: Challenges, Techniques, Examples

2010-48 Milan Lovric (EUR) Behavioral Fi-
nance and Agent-Based Artificial Markets

2010-49 Jahn-Takeshi Saito (UM) Solving diffi-
cult game positions

2010-50 Bouke Huurnink (UVA) Search in Au-
diovisual Broadcast Archives

2010-51 Alia Khairia Amin (CWI) Understand-
ing and supporting information seeking tasks in
multiple sources

2010-52 Peter-Paul van Maanen (VU) Adaptive
Support for Human-Computer Teams: Explor-
ing the Use of Cognitive Models of Trust and
Attention

2010-53 Edgar Meij (UVA) Combining Con-
cepts and Language Models for Information Ac-
cess

2011-01 Botond Cseke (RUN) Variational Algo-

rithms for Bayesian Inference in Latent Gaussian
Models

2011-02 Nick Tinnemeier(UU) Organizing
Agent Organizations. Syntax and Operational
Semantics of an Organization-Oriented Pro-
gramming Language

SIKS DISSERTATION SERIES

2011-03 Jan Martijn van der Werf (TUE)
Compositional Design and Verification of
Component-Based Information Systems

2011-04 Hado van Hasselt (UU) Insights in Re-
inforcement Learning; Formal analysis and em-
pirical evaluation of temporal-difference learning
algorithms

2011-05 Base van der Raadt (VU) Enterprise
Architecture Coming of Age - Increasing the Per-
formance of an Emerging Discipline.

2011-06 Yiwen Wang (TUE) Semantically-
Enhanced Recommendations in Cultural Her-
itage

2011-07 Yujia Cao (UT) Multimodal Informa-
tion Presentation for High Load Human Com-
puter Interaction

2011-08 Nieske Vergunst (UU) BDI-based Gen-
eration of Robust Task-Oriented Dialogues

2011-09 Tim de Jong (OU) Contextualised Mo-
bile Media for Learning

2011-10 Bart Bogaert (UvT) Cloud Content
Contention

2011-11 Dhaval
Awareness:
spective
2011-12 Carmen Bratosin (TUE) Grid Archi-
tecture for Distributed Process Mining
2011-13 Xiaoyu Mao (UvT) Airport under Con-

trol. Multiagent Scheduling for Airport Ground
Handling

2011-14 Milan Lovric (EUR) Behavioral Fi-
nance and Agent-Based Artificial Markets

2011-15 Marijn Koolen (UvA) The Meaning of
Structure: the Value of Link Evidence for Infor-
mation Retrieval

2011-16 Maarten Schadd (UM) Selective Search
in Games of Different Complexity

2011-17 Jiyin He (UVA) Exploring Topic Struc-
ture: Coherence, Diversity and Relatedness

2011-18 Mark Ponsen (UM) Strategic Decision-
Making in complex games

2011-19 Ellen Rusman (OU) The Mind ’ s Eye
on Personal Profiles

2011-20 Qing Gu (VU) Guiding service-oriented
software engineering - A view-based approach

2011-21 Linda Terlouw (TUD) Modularization
and Specification of Service-Oriented Systems

2011-22 Junte Zhang (UVA) System Evaluation
of Archival Description and Access

Vyas (UT) Designing for
An Experience-focused HCI Per-

187

2011-23 Wouter Weerkamp (UVA) Finding Peo-
ple and their Utterances in Social Media

2011-24 Herwin van Welbergen (UT) Behavior
Generation for Interpersonal Coordination with
Virtual Humans On Specifying, Scheduling and
Realizing Multimodal Virtual Human Behavior

2011-25 Syed Waqar ul Qounain Jaffry (VU)
Analysis and Validation of Models for Trust Dy-
namics

2011-26 Matthijs Aart Pontier (VU) Virtual
Agents for Human Communication - Emotion
Regulation and Involvement-Distance Trade-
Offs in Embodied Conversational Agents and
Robots

2011-27 Aniel Bhulai (VU) Dynamic website
optimization through autonomous management
of design patterns

2011-28 Rianne Kaptein(UVA) Effective Fo-
cused Retrieval by Exploiting Query Context
and Document Structure

2011-29 Faisal Kamiran (TUE) Discrimination-
aware Classification

2011-30 Egon van den Broek (UT) Affective
Signal Processing (ASP): Unraveling the mys-
tery of emotions

2011-31 Ludo Waltman (EUR) Computational
and Game-Theoretic Approaches for Modeling
Bounded Rationality

2011-32 Nees-Jan van Eck (EUR) Methodologi-
cal Advances in Bibliometric Mapping of Science
2011-33 Tom van der Weide (UU) Arguing to
Motivate Decisions

2011-34 Paolo Turrini (UU) Strategic Reason-
ing in Interdependence: Logical and Game-
theoretical Investigations

2011-35 Maaike Harbers (UU) Explaining
Agent Behavior in Virtual Training

2011-36 Erik van der Spek (UU) Experiments
in serious game design: a cognitive approach

2011-37 Adriana Burlutiu (RUN) Machine
Learning for Pairwise Data, Applications for
Preference Learning and Supervised Network In-
ference

2011-38 Nyree Lemmens (UM) Bee-inspired
Distributed Optimization

2011-39 Joost Westra (UU) Organizing Adap-
tation using Agents in Serious Games

2011-40 Viktor Clerc (VU) Architectural
Knowledge Management in Global Software De-
velopment

188

2011-41 Luan Ibraimi (UT) Cryptographically
Enforced Distributed Data Access Control

2011-42 Michal Sindlar (UU) Explaining Be-
havior through Mental State Attribution

2011-43 Henk van der Schuur (UU) Process Im-
provement through Software Operation Knowl-
edge

2011-44 Boris Reuderink (UT) Robust Brain-
Computer Interfaces

2011-45 Herman Stehouwer (UvT) Statistical
Language Models for Alternative Sequence Se-
lection

2011-46 Beibei Hu (TUD) Towards Contextual-

ized Information Delivery: A Rule-based Archi-
tecture for the Domain of Mobile Police Work

2011-47 Azizi Bin Ab Aziz(VU) Exploring
Computational Models for Intelligent Support of
Persons with Depression

2011-48 Mark Ter Maat (UT) Response Selec-
tion and Turn-taking for a Sensitive Artificial
Listening Agent

2011-49 Andreea Niculescu (UT) Conversa-
tional interfaces for task-oriented spoken dia-
logues: design aspects influencing interaction
quality

2012-01 Terry Kakeeto (UvT) Relationship
Marketing for SMEs in Uganda

2012-02 Muhammad Umair(VU) Adaptivity,
emotion, and Rationality in Human and Ambi-
ent Agent Models

2012-03 Adam Vanya (VU) Supporting Archi-
tecture Evolution by Mining Software Reposito-
ries

2012-04 Jurriaan Souer (UU) Development of
Content Management System-based Web Appli-
cations

2012-05 Marijn Plomp (UU) Maturing Interor-
ganisational Information Systems

2012-06 Wolfgang Reinhardt (OU) Awareness
Support for Knowledge Workers in Research
Networks

2012-07 Rianne van Lambalgen (VU) When the
Going Gets Tough: Exploring Agent-based Mod-
els of Human Performance under Demanding
Conditions

2012-08 Gerben de Vries (UVA) Kernel Meth-
ods for Vessel Trajectories

2012-09 Ricardo Neisse (UT) Trust and Privacy
Management Support for Context-Aware Service
Platforms

SIKS DISSERTATION SERIES

2012-10 David Smits (TUE) Towards a Generic
Distributed Adaptive Hypermedia Environment

2012-11 J.C.B. Rantham Prabhakara (TUE)
Process Mining in the Large: Preprocessing, Dis-
covery, and Diagnostics

2012-12 Kees van der Sluijs (TUE) Model
Driven Design and Data Integration in Semantic
Web Information Systems

2012-13 Suleman Shahid (UvT) Fun and Face:
Exploring non-verbal expressions of emotion
during playful interactions

2012-14 Evgeny Knutov(TUE) Generic Adap-
tation Framework for Unifying Adaptive Web-
based Systems

2012-15 Natalie van der Wal (VU) Social
Agents. Agent-Based Modelling of Integrated
Internal and Social Dynamics of Cognitive and
Affective Processes

2012-16 Fiemke Both (VU) Helping people by
understanding them - Ambient Agents support-
ing task execution and depression treatment

2012-17 Amal Elgammal (UvT) Towards a
Comprehensive Framework for Business Process
Compliance

2012-18 Eltjo Poort (VU) Improving Solution
Architecting Practices

2012-19 Helen Schonenberg (TUE) What’s
Next? Operational Support for Business Process
Execution

2012-20 Ali Bahramisharif (RUN) Covert Vi-
sual Spatial Attention, a Robust Paradigm for
Brain-Computer Interfacing

2012-21 Roberto Cornacchia (TUD) Querying
Sparse Matrices for Information Retrieval

2012-22 Thijs Vis (UvT) Intelligence, politie en
veiligheidsdienst: verenigbare grootheden?

2012-23 Christian Muehl (UT) Toward Affec-
tive Brain-Computer Interfaces: Exploring the
Neurophysiology of Affect during Human Media
Interaction

2012-24 Laurens van der Werff (UT) Evalua-
tion of Noisy Transcripts for Spoken Document
Retrieval

2012-25 Silja Eckartz (UT) Managing the Busi-
ness Case Development in Inter-Organizational
IT Projects: A Methodology and its Application

2012-26 Emile de Maat (UVA) Making Sense of
Legal Text

2012-27 Hayrettin Giirkék (UT) Mind the
Sheep! User Experience Evaluation & Brain-
Computer Interface Games

SIKS DISSERTATION SERIES

2012-28 Nancy Pascall (UvT) Engendering
Technology Empowering Women

2012-29 Almer Tigelaar (UT) Peer-to-Peer In-
formation Retrieval

2012-30 Alina Pommeranz (TUD) Designing
Human-Centered Systems for Reflective Deci-
sion Making

2012-31 Emily Bagarukayo (RUN) A Learn-
ing by Construction Approach for Higher Order
Cognitive Skills Improvement, Building Capac-
ity and Infrastructure

2012-32 Wietske Visser (TUD) Qualitative
multi-criteria preference representation and rea-
soning

2012-33 Rory Sie (OUN) Coalitions in Cooper-
ation Networks (COCOON)

2012-34 Pavol Jancura (RUN) Evolutionary
analysis in PPI networks and applications

2012-35 Evert Haasdijk (VU) Never Too Old
To Learn — On-line Evolution of Controllers in
Swarm- and Modular Robotics

2012-36 Denis Ssebugwawo (RUN) Analysis and
Evaluation of Collaborative Modeling Processes
2012-37 Agnes Nakakawa (RUN) A Collabo-

ration Process for Enterprise Architecture Cre-
ation

189

2012-38 Selmar Smit (VU) Parameter Tun-
ing and Scientific Testing in Evolutionary Algo-
rithms

2012-39 Hassan Fatemi (UT) Risk-aware design
of value and coordination networks

2012-40 Agus Gunawan (UvT) Information Ac-
cess for SMEs in Indonesia

2012-41 Sebastian Kelle (OU) Game Design
Patterns for Learning

2012-42 Dominique Verpoorten (OU) Reflection
Amplifiers in self-regulated Learning

2012-44 Anna Tordai (VU) On Combining
Alignment Techniques

2012-45 Benedikt Kratz (UvT) A Model and
Language for Business-aware Transactions
2012-46 Simon Carter (UVA) Exploration and
Exploitation of Multilingual Data for Statistical
Machine Translation

2012-47 Manos Tsagkias (UVA) Mining Social
Media: Tracking Content and Predicting Behav-
ior

2012-48 Jorn Bakker (TUE) Handling Abrupt
Changes in Evolving Time-series Data

2012-49 Michael Kaisers (UM) Learning against
Learning - Evolutionary dynamics of reinforce-
ment learning algorithms in strategic interac-
tions

